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ABSTRACT

Mobile Computational Imaging Systems for Appearance Modeling Based Surface Shape

Recovery

Chia-Kai Yeh

Surface appearance represents the sense impression of the surface. In visual art, the artists

try to use the appearance of their artworks to express their mental state and philosophy.

Researchers in the cultural heritage community has been trying to use different analysis ap-

proaches to interpret artworks. In Computer Graphics and Computational Imaging, surface

appearance modeling and shape recovery has been the central challenge. Combining the

optimized hardware (camera and illuminants) and reconstruction algorithm, it could esti-

mate the surface geometry and material properties with the measured surface appearances.

Unfortunately, the cultural heritage community hardly exploits these powerful tools due to

the high requirement of sophisticated system.

In this thesis, we introduce novel computational imaging frameworks that apply com-

modity hardware such as mobile phone/tablet system, digital single-lens reflex (DSLR)

camera, and liquid-crystal display (LCD). Appearance modeling-based shape recovery tech-

niques such as Photometric Stereo (PS) and Phase Measuring Deflectometry (PMD) has

been widely used in academic research and industrial sophisticated applications. They have
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been intensively used for applications such as human digitization in visual effect and indus-

trial inspection for high-quality geometry and material properties. However, conventional

appearance modeling-based methods require complicated hardware systems and constrained

environments, limiting its usage to different applications.

In the original PS image formation model, it assumes the light source places at infinity far

away. In order to obtain high-quality shape recovery, conventional PS techniques typically

require a giant light dome or calibration equipment (e.g. mirror ball) with open operation

space to carefully control the lighting condition. To break the limitation and improve the

robustness, we propose a novel near-light PS framework by leveraging photogrammetry and

unique portable dual cameras system to improve the lighting calibration. An uncalibrated

photometric stereo setup is augmented by a synchronized secondary witness camera co-

located with a point light source. By recovering the witness of the camera’s position for each

exposure with photogrammetry techniques, we estimate the precise 3D location of the light

source relative to the photometric stereo camera. We have shown a significant improvement

in both light source position estimations and normal map recovery compared to previous

uncalibrated photometric stereo techniques. Besides, with the new configuration we pro-

pose, we benefit from improved surface shape recovery by jointly incorporating the corrected

photometric stereo surface normal and a sparse 3D point cloud from photogrammetry.

Although the proposed PS framework helps improve the robustness and quality of the

surface shape, to further improve the portability and accessibility for PS to apply to dif-

ferent applications, we introduce mobile shape-from-shifting (SfS): a simple, low-cost and

streamlined photometric stereo framework for scanning planar surfaces with a consumer mo-

bile device coupled to a low-cost add-on component. Our free-form mobile SfS framework

relaxes the rigorous hardware and other complex requirements inherent to conventional 3D
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scanning tools. This is achieved by taking a sequence of photos with the on-board camera

and flash of a mobile device. The sequence of captures is used to reconstruct high-quality

normal maps using near-light photometric stereo algorithms, which are of comparable qual-

ity to conventional photometric stereo. We demonstrate 3D surface reconstructions with SfS

on different materials and scales. Moreover, the mobile SfS technique can be used” in the

wild” so that 3D scans may be performed in their natural environment, eliminating the need

for transport to a laboratory setting.

PS techniques could welly handle most of the common surface material and provide

high-quality surface geometry. However, it would fail with highly reflective surface which

disobeyed the Lambertian reflectance used in PS. To cover specular material, we introduce

a system that exploits the screen and front-facing camera of a mobile device to perform

three-dimensional Deflectometry-based surface modeling. In contrast to current mobile de-

flectometry systems, our method can capture surfaces with large normal variation and wide

field of view (FoV). We achieve this by applying automated multiview panoramic stitching

algorithms to produce a large FoV normal map from a hand-guided capture process without

the need for external tracking systems, like robot arms or fiducials.

Lastly, we propose an inverse rendering based reflective surface shape reconstruction.

Conventional multiview deflectometry techniques require multiview normal map stitching

and normal field integration to obtain 3D surface geometry. Instead of trying to contain the

noise that introduces in these two procedures, we adopt differential renderer to directly op-

timize the surface geometry from the appearance measurements, which produce high quality

3D surface information.
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CHAPTER 1

Introduction

1.1. Surface Appearance Modeling

In the history of the visual arts, the artist has spent lots of efforts using different art forms

such as painting, drawing, sculpture, ceramics, and architecture to share their perspective

with the others. The appearance of the artworks meets the spectators’ eyes and evokes

emotion and a sense of expression so that the spectators could relate to the artist’s philosophy

and background characteristic of times. Over the years, the conservators in the cultural

heritage community tried to document, preserve, and restore the artifacts for our future

generation. In the meantime, conservation science uses different kinds of analysis approaches

to interpret the materials and techniques used by artists and study the causes of deterioration.

In the last decade, the conservation science community has started to adopt imaging methods

such as 3D imaging, which is non-destructive and fast as their analytical techniques.

To fully understand the relationship between every component of the surface appearance,

surface appearance modeling has been the central challenge in computer vision and computer

graphics. Given measurements of the surface, it estimates the geometry and material prop-

erties of the surface which have opened up a wide range of compelling applications such as

visual effects in movies and video games [24], computer-aided-design for rapid prototyping,

quality inspection [143], cultural heritage [70, 23, 51, 58, 32, 22, 110], and biological imag-

ing. For human visual perception, this problem seems trivial to use since we perform it

easily and often subconsciously. On the other hand, it is an extremely challenging task for
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computers since it perceives the images in a completely different way. In the last decade,

graphics researchers have pushed a significant progress on photorealistically delineation ap-

pearance of complex real-world material [25, 62, 29, 133]. While there has been remarkable

progress in appearance modeling research, still there are some significant disconnections be-

tween theory and practice to block the usage in different applications such as conservation

science. In this dissertation, we focus on the ability to using appearance information to infer

the surface properties, in particular, surface shape. Most importantly, we focus on enabling

such capabilities and techniques to perform under relatively unconstrained and user-friendly

conditions and also decrease the hardware requirement by using commodity hardware such

as DSLRs, tablets, and mobile phones.

Figure 1.1. Surface appearance model: The appearance of a surface com-
bines with its shape, illumination, and reflectance which consist of material
bidirectional distribution function and texture.
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Iobserved = fλ(n, k, l), (1.1)

To achieve these capabilities in surface appearance modeling, we first have to understand

how shape, reflectance, and illumination are interacted with each other on/in the surface

to reveal its appearance. As Shown in Figure 1.1 and Eq. 1.1, the intensity observed at a

surface point I is a complex function fλ between surface geometry n, materials properties

(color texture) k and illumination l. In early computer graphics, there has been plenty of

effort devoted to model different material properties and light models. They model the phe-

nomenon by point-based, which describes the portion of the light that is reflected toward the

viewpoint when a surface point is lit from a certain direction. This complex function fλ often

formalized by the means of the bi-directional reflectance distribution function (BRDF [93]).

It describes the ratio between outgoing radiance Lo toward ωo at surface point xp and incident

irradiance Li from a direction ωi:

fλ(θo, φo, θi, φi) =
Lo(θo, φo)

Li(θi, φi)
(1.2)

which (θo, φo) and (θi, φi) is the two spherical directions ωo and ωi under spherical coordinates

relative to a local surface coordination. The rendering equation [63] which is often used to

simulate the light transport in realistic real-world scene could be expressed by integrating the

BRDF fλ, surface geometry n and incident ωo and outgoing ωi directions over the positive

hemisphere of the surface:

L(xp, ωo) =

∫
Ω+

fλ(xo, ωo, ωi)L(xp, ωi)(ωi · n)dωi (1.3)
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Appearance modeling-based shape recovery methods try to solve this high complexity

inverse problem to isolate these factors. There are plenty of different techniques that have

been studied in detail in prior researches. Most of them follow the general approach, which

estimates the shape and reflectance - in terms of surface orientation and color texture - by

assuming the illumination and imposing priors to the reflectance (e.g. Lambertian material

or Specular material).

Iobserved = kdNL (1.4)

In computer vision, it is a long-time research problem to model the shape and reflectance

information with known illumination conditions and prior assumption of the reflectance. For

diffuse reflectance material, photometric stereo (PS) [55] is an extensively studied research

topic which estimates surface normal from a set of photographs taken with a fixed camera

position and multiple known lighting directions. Intensity values in the captured images

are modeled as in Eq. 1.4 which a function of lighting angle L, surface normal N , and

material reflectance kd. By inverting this model, PS techniques recover surface normal,

which can then be integrated to produce 3D Surface shape. The original formulation by Horn

assumed lights are infinitely far away, the camera is orthographic, and the object surface is

Lambertian and convex (i.e., no shadows or inter-reflections). Since photometric stereo was

originally introduced, several researchers have sought to generalize the technique for more

practical camera, surface, and lighting models. Belhumeur et al. [12] discovered that with an

orthographic camera model and uncalibrated lighting, the object’s surface could be uniquely

determined to within a bas-relief ambiguity. Papadhimitri and Favaro et al. [96] recently

pointed out that this ambiguity is resolved under the perspective camera model. Several



www.manaraa.com

22

researchers have also sought to relax the Lambertian reflectance assumption and incorporate

effects such as specular highlights and shadows. New techniques have been introduced based

on non-Lambertian reflectance models [52, 7, 45], or sophisticated statistical methods to

automatically filter non-Lambertian effects [142, 59, 148]. Others consider non-isotropic

illuminations [102]. Ackermann et al. [3] recently gave a more comprehensive survey on

earlier and recent photometric stereo techniques.

Although using the Lambertian prior has achieved great success among most of the

objects, unfortunately, real-life objects often involve Specular materials that interact with

the light in a totally different way. In order to cover the specular material, researchers had

proposed Deflectometry [66, 57], Specular Flow [4, 106], and shape from specularity [127] to

model the specular surface. Because of the uniqueness of the specular reflectance that for

single incoming light, the specular reflection would only present in one direction, researchers

posed this as a correspondence problem. The observed appearance of a specular (mirror-

like) surface is a distorted version of the illumination, where the deformation depends on the

surface normal distribution of the object surface. From this deformation, the normal vectors

of the surface can be calculated with the known correspondence between illumination and

the observation point. As compared to diffuse reflection, which would miss detail due to the

blurring effects of subsurface scattering, specular reflection could reveal more high-frequency

geometry detail of the surface with complex material reflectance.

1.2. Statement of the problem

Computational 3D imaging techniques have had explosive growth in both industry and

academic research during the last decade with a variety of applications. Although there are

lots of real-world tasks that have been benefited by different kinds of commercial 3D imaging
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systems, the conventional commercial 3D imaging system still suffer from many drawbacks.

Among the triangulation-based approaches, Photogrammetry provides high versatility for

different setups. Depend on the applications, the system could be either with a single

camera that took images from different positions [117] or fixed multiple cameras captured

at the same time [39]. The resulting 3D result is within centimeter-scale and comes with a

correspondent low-quality color texture of the surface. The result is relatively spare since

3D information is computed only for each feature point, but not each pixel. These sparse

3D points can be interpolated to generate a low-resolution 3D mesh model of the object.

It would also suffer from the textureless surface, which could not efficiently generate the

correspondences. Structured light system [149, 41] improves the depth resolution to sub-

millimeter and solves the textureless issue by projecting designed patterns. However, both of

the methods cannot image complex material such as specular and transparent surfaces since

the geometry triangulation is based on the photo-consistency property of the Lambertian

reflectance.

On the other hand, appearance modeling-based methods such as Photometric Stereo and

Deflectometry are modeling surface reflectance to recover dense geometry information and

reflectance properties. Both of the surface appearance modeling techniques have been ex-

plored extensively in the literature but still have fundamental drawbacks, which make it hard

to apply to lots of real-world applications. In order to have high quality and accurate results,

surface appearance modeling usually requires a sophisticated and bulked hardware system.

In typical setups, the hardware system (e.g. a lighting dome or a large curve display screen)

could effectively constrain the illumination condition for the modeling. Moreover, they often

use high-end, high speed, and well-calibrated camera system to capture the observed appear-

ance. However, this custom hardware solution is expensive and often inaccessible, making
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it impractical for different usages. Another major issue with appearance modeling-based

methods is the accuracy of the global geometry. With the pixel-based modeling, it is capa-

ble of revealing highly detailed surface geometry features. Yet, in the original appearance

formation, it only models the surface orientation, which usually represents in surface normal

instead of depth information. In order to acquire 3D geometry, the further integration step

is required. Over the years, many research efforts have spent on this problem [103], but still,

it remains a significant gap from the surface normal to the exact depth information.

1.3. Summary and outline of the thesis

In this dissertation, we leverage commodity hardware systems such as DSLR camera,

flashlight, display screen, and mobile system with computational imaging algorithms to

improve the usability and robustness for different applications. Solving these problems in

a mobile setting raises some additional challenges, and those already enumerated above.

Compared to the state-of-art appearance modeling system such as the sophisticated and

carefully calibrated light stage system [24], the inability to having well-constrain conditions

such as the illumination as well as additional challenges in terms of the camera calibration

increases the complexity of the problem. Although the significant hardware reduction poses

critical challenges, we think the problem that we seek to address in this thesis could enable

highly potential applications. For example, in the cultural heritage community, surface

appearance modeling could be highly adopted as a collection survey and documenting tool.

Chapter 2 proposes an online calibrated, streamlined framework combining photometric

stereo and photogrammetric information for a robust 3D acquisition. Chapter 3, we extend

the framework into a single mobile device. Chapter 4 studies the surface shape estimation

for a highly specular material with single mobile device. In Chapter 5, we extend the
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multiview deflectometry with a differential rendering-based depth optimization framework

to further improve 3D shape information. Lastly, we summarize the discussion contribution

and highlight the potential applications that could be benefited by the proposed system in

Chapter 6.

1.4. Disclaimer

The mathematical derivations and formulations, results and a large part of the text in

the thesis are adapted from:

• C. Yeh, N. Matsuda, X. Huang, F. Li, M. Walton and O. Cossairt, “ A Streamlined

Photometric Stereo Framework for Cultural Heritage”, In European Conference on

Computer Vision, pp. 738-752. Springer, Cham, 2016.

• C. Yeh, F. Li, G. Pastorelli, M. Walton, A. K. Katsaggelos and O. Cossairt, “

Shape-from-Shifting: Uncalibrated Photometric Stereo with a Mobile Device”, In

2017 IEEE International Conference on eScience Workshop on High Throughput

Digitization for Natural History Collections (BigDig)

• F. Willomitzer, C. Yeh, V. Gupta, W. Spies, F. Schiffers, A. K. Katsaggelos, M.

Walton, and O Cossairt, “ Hand-guided qualitative deflectometry with a mobile

device”, OSA Optics Express 28, 9027-9038 (2020)
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CHAPTER 2

Streamlined Near-Light Photometric Stereo Framework with Dual

Cameras

2.1. Introduction

Computational Imaging techniques have been widely used for art history analysis and

cultural heritage research in the last decade. Digital imaging technologies empower conser-

vation scientists by revealing more information about works of art, helping to better preserve

and protect their history for future generations. Accurate, automatic 3D surface recovery

using only commodity cameras is particularly important for a number of applications in

cultural heritage research. Since artifacts of historical significance are often located in pub-

lic spaces or museums without the possibility of relocation to a laboratory environment,

art conservators require 3D shape acquisition techniques that are portable, inexpensive,

non-destructive, and fast, in order to uncover previously unknown information about artist

techniques and materials. Two commonly used techniques that fit these requirements are

Reflectance Transformation Imaging (RTI) and Photogrammetry (PG).

RTI is a visualization technique that allows users to probe the appearance of an artwork

under arbitrary illumination conditions computationally, in a post-processing step. RTIs are

created from multiple photographs of the object captured by a camera with fixed position

and varying illumination. Researchers use RTI to virtually relight an object under arbitrary

illumination conditions. Computational relighting can reveal fine details of the subject’s 3D

surface, for instance, when strong raking light is used to visualize the surface appearance.
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However, because RTI is merely a visualization technique, it provides no direct access to

depth information. Similar to RTI, Photometric Stereo (PS) is a well-known technique in

computer vision and computer graphics. By observing the surface appearance and modeling

the photometric invariant properties from the same viewpoint but under varying lighting

conditions, it seeks to estimate the shape of the surface.

Alternatively, Photogrammetry (PG) uses images taken at different camera positions,

using triangulation to compute 3D surface shape. Following the photo-consistency under

the Lambertian reflectance assumption, Structure from Motion (SfM) techniques take feature

points that common between/among multiple views to jointly solve for both 3D location of

the surface points and the corresponding camera geometry. With the sparse point cloud and

calibrated camera geometry, Multi-view Stereo (MVS) would interpolate per-view depth map

to generate a low-resolution 3D mesh of the surface.

While there has been remarkable progress in both photometric stereo and photogramme-

try, there are still some significant disconnection between theory and practice. For example,

accurate PS normal output usually requires pre-calibrated lighting positions. In typical se-

tups, this is achieved using either lighting with a fixed calibrated 3D geometry (e.g. a lighting

dome) or by placing a reflective sphere in the scene to estimate incident lighting directions.

3D light position can be accurately pre-calibrated using a lighting dome, but this custom

hardware solution is often inaccessible and sometimes impractical. A reflective sphere can

accurately measure distant lighting but produces significant errors when light sources violate

the far light condition and are actually located near the object (e.g. within 4 times the size

of the object), typical of many PS capture setups [58]. PG techniques do not require control-

lable lighting but do require a high number of identifiable correspondence points in order to

produce high resolution surface output, precluding the possibility of capturing low-texture
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or single-material objects frequently found in a wide variety of natural scenes. Furthermore,

at large standoff distances, depth precision for PG methods is relatively coarse, while PS

solutions are capable of capturing highly detailed depth features.

Fusion Depth map 𝑍

Photogrammetry

𝐼#$% ,⋯ 𝐼#$(

Near-Light
Photometric Stereo𝐿%,⋯ , 𝐿(

3D Lighting Position

𝐼#*% ,⋯ 𝐼#*(

Normal Map 𝑁

Fusion

Depth Map 𝑧̂

Figure 2.1. Overview of the Streamlined photometric stereo frame-
work for cultural heritage: We use photogrammetry to find the 3D light
positions [L1, · · · , Lk] relative to a stationary photometric stereo (PS) camera.
The estimated 3D light positions then allow us to compute accurate surface
normal N from the PS camera. We fuse the computed normal map with a
depth map ẑ, computed using photogrammetry, to generate globally accurate
3D shapes Z with high-quality micro surface details.

In this chapter, we present a robust 3D shape recovery capture framework for cultural

heritage, as shown in Figure 2.1. Throughout the remainder of the chapter, we will refer
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to these two cameras as the PS camera, capturing reflectance information from a fixed

position, and the PG camera, affixed to the light source and capturing scene structure for

photogrammetry from multiple views of the object. The PG camera images are processed

using existing SfM algorithms to recover the camera position for each frame, and thus the

lighting positions for the PS camera as well. Using these computed 3D lighting positions,

we then produce an accurate PS normal map. Because we have generated a point cloud

from the PG algorithm as well, we can fuse this sparse 3D information with the PS normal

map to produce a 3D surface with both the fine surface detail typical of PS techniques and

the absolute depth accuracy typical of PG techniques. The technique introduces minimal

complexity beyond a conventional photometric stereo capture setup, yet can be used to

significantly improve the accuracy of 3D surface reconstructions.

2.1.1. Contributions

• A simple, robust 3D capture system: We present a simple system for the

free-form photometric stereo capture system using just two cameras with wireless

synchronize triggers and an on-camera ring light. We show that our system simplifies

reflectance capture and results in more accurate 3D surface reconstruction.

• More accurate light position estimation: Previous techniques estimate 3D

light position directly from images from radiometric measurements [58], which are

easily corrupted by shadows and specularities. In contrast, our light position es-

timation is based on geometric triangulation using SfM and is, therefore, largely

independent of scene reflectance and illumination.

• Improved near-light PS surface recovery: Traditional PS techniques assume

infinitely distant light sources. Under this assumption, the lighting direction can be
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calibrated by placing a mirror ball in the scene. Our approach removes this far light

assumption and eliminates the need for a lighting calibration object. Instead, 3D

light position is estimated using a PG camera attached to the light source. We show

that by accurately measuring the 3D location of the light sources, we can recover

more accurate 3D surface shapes when using a PS setup that violates the far light

assumption.

• Large scale, high precision 3D reconstructions: We show experimentally that

our setup can be used to generate large field of view 3D shape reconstructions with

high precision. This is done by fusing the fine details from dense normal estimation

using PS, with the sparse 3D point clouds from our PG camera.

2.2. Previous Work

2.2.1. Reflectance Transformation Imaging

Reflectance transformation imaging is widely popular among art conservators through the

use of the CHI RTI Builder and Viewer software suites [23]. RTI, originally known as

Polynomial Texture Mapping (PTM), was first proposed by Malzbender [85] as a way to use

a polynomial basis function for computational relighting. Later, the hemispherical harmonics

(HSH) version [31] was introduced to reduce the directional bias in computational relighting

results. Palma et al. [95] estimated normal from PTM RTIs by fitting the pixel intensity to a

local bi-quadratic function of light angles and then setting the derivative to zero, which has

the effect of finding the direction of the brightest pixel. Conservators use the CHI software to

interactively explore image relighting and normal maps in the RTI Viewer, and also export

those images offline for further research.
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2.2.2. Photometric Stereo

In the original photometric stereo formulation introduced by Horn [53], light sources are

assumed infinitely distant, the camera is orthographic, and the object surface is Lamber-

tian reflectance and convex shape (i.e., no shadows or inter-reflections). There are the vast

majority of researchs are devoted to generalize the technique with the real-life scenes. Pa-

padhimitri and Favaro et al. [96] tried to solve the ambiguity of the shape estimation with the

perspective camera model. However, less attention has been paid to relaxing assumptions

on the lighting model. Several researchers [132, 97, 58] recently investigated removing the

far-light assumption to improve the accuracy of photometric stereo. Queau et al. [102] con-

sider non-isotropic illumination to accurately model the real-world lighting condition. Shi et

al. [115] recently came up with a benchmark dataset to quantitatively evaluate photometric

stereo methods for general scene conditions.

2.2.3. Photogrammetry

Developed in the 1990s, this technique has its origins in the computer vision community and

the development of automatic feature-matching algorithms from the previous decade. To

determine the 3D location of points within a scene, traditional photogrammetry methods

require the 3D location and pose of the cameras, or the 3D location of a series of control

points to be known. Later, Structure-from-Motion (SfM) relaxed this requirement, simulta-

neously reconstructing camera pose and scene geometry through the automatic identification

of matching features in multiple images [116, 118].
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2.2.4. Combining Photometric Stereo and Photogrammetry

Although PS provides relatively accurate surface normal, it is still challenging to reconstruct

a globally accurate surface shape. Some work has aimed to combine PG and PS techniques,

such as the multi-view photometric stereo method by Hernandez et al. [32], which used

RANSAC to estimate the light sources position and reconstruct 3D surfaces of Lambertian

objects. For calibrated light sources, Birkbeck et al. [15] employed a variational method

to estimate the surface and handle specular reflections using a Phong reflectance model.

Ahmed et al. [6] used calibrated illumination and multi-view video to capture normal fields

and improve the geometry templates. Wu et al. [141] performed a spherical harmonic lighting

approximation to combine multi-view photometric stereo. Sabzevariuse et al. [108] used the

3D metric information computed with SfM from a set of 2D landmarks to solve for the

bas-relief ambiguity for dense PS surface estimation. All of these algorithms require really

critical environment constraint, either accurate light-source calibration under far light model

or careful illumination design. Nehab et al. ’s [91] hybrid reconstruction algorithm focused on

leveraging Poisson system to combine depths and normal information. Their fusion algorithm

produces high-quality reconstruction of 3D surfaces with a given parametric surface.

Our method relaxes the hardware setup constraints relative to these prior methods. To

our knowledge, ours is the first system to work on the fusion between near-light PS model and

PG. Besides having more accurate light position and surface normal estimates, our method

also can leverage the surface estimate obtained using photogrammetry. By fusing PS and

PG results, we can produce an improved 3D surface that retains the advantages of both PS

and PG techniques.
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2.3. Our Streamlined Photometric Stereo Framework

2.3.1. Hardware Setup

Our system setup consists of two Canon 5D Mark III DSLR cameras with 50mm Canon

Prime lenses. One of these, the PS camera was affixed to a tripod above the imaging area.

A Polaroid 18 Super Bright Macro SMD LED Ring Light was mounted to the PG camera lens.

Both cameras were attached to a PocketWizard Flex TT5 wireless trigger system to ensure

synchronized exposures. From a systems perspective, the cameras and flash components

could be miniaturized (e.g. replaced with a point-and-shoot camera or even mobile system

that comes with both camera and flashlight) to allow for greater freedom by the operator

and quicker overall capture times. Lastly, a printed set of corner fiducial markers was affixed

to the imaging area to provide a means to scale the PS and PG image sets to match the

physical distances between the markers.

Figure 2.2. capture setup: We use two Canon 5D Mark III cameras with
50mm prime lens. The PS camera is placed about 0.5m away from the object.
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2.3.2. Framework Work Flow

We begin by capturing an image at each of k different PG camera positions (see Fig. 2.2).

A ring light is placed around the lens of the PG camera so that the centroid location of the

illumination coincides with the optical center of the lens. The PG camera captures a set

of images [I1
PG, ..., I

k
PG] of the scene from a unique viewing location. The PS camera also

captures k images [I1
PS, ..., I

k
PS], but from a fixed position. For the PG camera, illumination is

always aligned with the camera axis. For the PG camera, a diversity of illumination directions

is captured. The PG images [I1
PG, ..., I

k
PG] are input into an off-the-shelf photogrammetry

software Agisoft PhotoScan [5], which outputs the camera centers corresponding to the 3D

light source positions [L1, ..., Lk]. In addition, the software computes a sparse point cloud

estimate of the objects ẑ. An image from the PS camera is input together with the PG

camera images so that the extrinsic parameters from all cameras are determined in a unified

global coordinate frame. Note that our PG images do not all have the same lighting and

contain specularity and shadows under different lighting environments, none of which is ideal

for typical passive multi-view stereo matching. However, we have sufficiently dense views

under similar-enough lighting for the matching algorithm to find enough matching features

between the images to reconstruct a photogrammetry model, which is accurate to within a

few millimeters.

Next, the 3D light positions [L1, ..., Lk] are used as input into a PS algorithm to accurately

recover normal and albedo based on the spatially-varying incident lighting position at each

point p in the scene. To accomplish this, we solve a least squares problem to iteratively solve

for the albedo a and normal N , given captured images [I1
PS, ..., I

k
PS] and corresponding 3D
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light positions [L1, ..., Lk], similar to the work by Papadhimitri et al. [97]:

arg min
a′p,Np

∑
p,k

(
a′pN

T
p

Lk − p

‖Lk − p‖
− I ′PSk

)2

, (2.1)

where the near-light compensated pixel intensity

I ′PS
k = IkPS

‖Lk − p‖2

ek
. (2.2)

Finally, the PS algorithm generates a normal map N = (nx, ny, nz) for each pixel in

the image. I, The relationship between the estimated normal and the depth map z is then

( ∂z
∂x
, ∂z
∂y

) = (p, q), where (p, q) , (−nx

nz
,−ny

nz
). The PG algorithm produces a depth map ẑ of

the scene only for a sparse subset of pixels. We assume ẑ is transformed to the PS camera

frame using the extrinsic parameters computed from the PG/SfM software. We then recover

the PS-PG fused depth zi for each pixel i by solving the following least squares problem:

minimize
∑
i∈I

∥∥∥∥∥∥∥
 ∂zi/∂xi

∂zi/∂yi

−
 pi

qi


∥∥∥∥∥∥∥

2

2

+ λ
∑
i∈Î

(zi − ẑi)2

=‖∇Z − Γ|22 + λ‖MZ − Ẑ‖2
2,

(2.3)

where Z, Ẑ, andΓ are the lexicographically vectorized versions of zi, ẑi, and(pi, qi), ∇ is the

gradient matrix, M is a binary selection matrix that only selects the pixels that have valid

PG depths, and λ is the parameter depends on the confidence of PG depth.

Note that this formulation does not rely on any linear constraints or statistical priors; it is

simply a weighted least-squares approach that attempts to satisfy, on average, the conditions

observed by both the PS and PG recovery techniques. A wide variety of variations on this

optimization could be employed depending on the type of object and intended usage of the
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recovered surface, but a detailed analysis of such possibilities is beyond the scope of this

paper. We simply aim to demonstrate that the combination of both sets of simultaneously

captured data, even with a rudimentary approach to optimization, characterizes the surface

significantly better than either approach alone.

2.4. Experiments and Results

2.4.1. Light Position Estimation

First, we evaluated the accuracy and stability of our PG camera-based method for light

position estimation. In order to compare to known physical lighting positions, we affixed

the tripod mount of the PG camera onto an optical mounting post, which we then inserted

sequentially into optical post holders at known locations on an optical table. Though we

do not consider this manual procedure sufficient to provide ground truth data, the sub-

millimeter tolerances of the machined optical table and mounting posts can demonstrate the

extent to which the recovered lighting positions can be relied upon.

In Table 2.1, we repeated the three fixed lighting positions 5 times, which resulted in an

average error relative to our measured positions of less than 10mm, or well under 1% error.

The standard deviation of these values was less than 1mm, indicating good repeatability of

the technique. Compared to Huang et al. [58] using image intensity to estimate the lighting

position, our approach using PG/SfM has more accurate lighting position estimation for a

near-light photometric stereo model.
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P1 P2 P3

Ground truth distance (mm) 869.98 896.28 756.12

∆L (Our method) (mm) 1.25 9.09 8.27

∆L (Huang et al. [58]) (mm) 242.46 239.76 216.11

SD δ (Our method) (mm) 0.26 0.23 0.09

SD δ (Huang et al. [58]) (mm) 2.09 4.18 2.09

Table 2.1. Measure value v.s. ground truth for three light positions
P1, P2, and P3: The first row shows the ground truth distance between the
PG camera optical center and the 3D location of light sources P1, P2 and
P3. The second and third rows show ∆L values for our technique and that
of Huang et al. [58], respectively. The ∆L values reported are the distance
between the estimated 3D position of the PG camera’s optical center, and the
ground truth 3D position, averaged over five measurements. The fourth and
fifth rows report the standard deviation of the distance between the estimated
and ground truth 3D location of the PG camera.

2.4.2. Normal Map Accuracy

To confirm that PG lighting position estimation produces a more accurate PS normal map,

we compare normal map recovery for a sphere using our method, the near-light model in

Huang et al. [58], a conventional distant-light PS model, and ground truth.

Figure 2.3 shows the X-component of the normal map sampled through the center of

a sphere for the ground truth, conventional distant-light PS model, near-light model from

Huang et al. [58], and our PG light estimation. Our method clearly demonstrates increased

fidelity in normal map estimation.

This method is a unique use case for PG techniques in surface reconstruction because it

can be applied to textureless objects that would normally be a failure case for PG. So long

as there are sufficient correspondence features to perform bundle adjustment somewhere in
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(a) NX Comparison (b) Normal Map

Figure 2.3. Normal Map Accuracy for a sphere: Comparison between
the x component of the estimated normal map for a sphere. The ground truth
(shown in blue) normal for the sphere closely resembles a line (the gradient of
a parabola is exactly a line). The normal estimate computed using the far light
assumption (shown in cyan) and the uncalibrated photometric stereo method
from Huang et al. [58] (shown in red) both produce significant errors. Our
method (shown in green) accurately estimates 3D light position, and therefore
produces the most accurate 3D normal.

the PG camera field of view, our technique will produce accurate lighting positions, and thus

more accurate normal maps, regardless of the amount of texture in the target object.

2.4.3. Fusion Surface Reconstruction

When objects have enough surface texture for the PG algorithm alone to produce a sparse

point cloud, we can leverage this data for more globally accurate surface reconstruction.

Surface shape recovery remains a significant challenge for all PS techniques since small

errors in normal recovery will produce incorrect geometry upon integration, and the absolute

position of the surface can never be recovered. The formulation in Equation 2.3 retains the

fine surface detail recovered by PS and the gross geometric shape recovered by PG.
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We chose to test the visual fidelity of surface fusion reconstructions using a cultural

heritage object from our University’s rare book collection, an object representative of the

intended use case for this technique. Shown in Figure 2.4, this 16th-century reprinting of

Hesiod’s ’Works and Days’, was covered with a reused parchment from an early manuscript

that was scraped down to remove the letters from the top surface. Small ridges on the surface

are aligned with the direction of the scraping motion. We hope to observe these abrasions in

the context of the largely flat overall surface geometry. PS techniques alone will not retain

the course flatness but will reveal the small ridges, while PG techniques alone will retain the

flat surface but will not resolve the ridges at all. This object is thus an example of a surface

of our PS and PG fusion technique is well suited to recover.

Figure 2.4. Test object: a 16th century book covered with reused parchment.
Small surface abrasions on the surface are of interest to historians.

The λ parameter in Equation 2.3 was set to 0.15, a value found experimentally that

retained surface detail while preventing the large-scale PS errors to propagate into the final

output.
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(a) Reference Image (b) Reference Image Inset

(c) PS Near-Light Surface (d) PS Near-Light Surface Inset

(e) PG Surface (f) PG Surface Inset

(g) Fusion Surface (h) Fusion Surface Inset

Figure 2.5. Reconstruction Results: Comparison of reconstruction meth-
ods on a 16th century book shown in (a), and hi-resolution inset (b), corre-
sponding to the outlined region to the left. After surface recovery, these results
are depicted in orthographic perspective and illuminated by a red directional
light along the x-axis and a blue directional light along the y-axis to reveal
surface details without exaggerating the scale of the z-axis. The PS recon-
structions using the method from [58], shown in (c) and (d), exhibit severe
global geometry errors due to lack of absolute reference points (the scale in
these images were reduced to accommodate the extreme range of z-axis val-
ues). PG output from Agisoft Photoscan is shown in (e) and (f). Our fusion
results, produced by optimizing the surface for consistency with both PS and
PG results are shown in (g), (h). Note that the fusion results exhibit a balance
of course geometric accuracy (a flat book surface) while retaining small surface
variations.
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(a) Hutsul Ceramics Ukraine Terracotta Sculpture

(b) Chinese Jade BI Carvings

Figure 2.6. Experimental Results using our Framework: We tested our
framework on several objects with complex geometry and fine surface detail.
These objects demonstrate that our system produces a good balance between
global geometric accuracy and micro surface details. 3D reconstruction results
using only photometric stereo (PS), and photogrammetry (PG) are shown for
comparison. Our fusion results clearly demonstrate superior 3D reconstruction
quality.
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In Figure 2.5, we show side-by-side comparisons between the full surface and an inset

revealing small details. The top row contains a reference image from the PS data set -

the full book surface on the left, followed by the pink inset region expanded on the right.

These regions are used in subsequent rows, where surface reconstructions are depicted in

orthographic renders using a white Lambertian material and raking angle lights to highlight

surface variation in blue along the y-axis and red along the x-axis. The 2nd row shows the

surface output from the photometric stereo algorithm, which despite recovering small sur-

face details, exhibits extreme geometric errors, which would significantly limit any objective

analysis based on the surface height. The 3rd row shows the PG surface mesh output from

Agisoft Photoscan. The PG results correctly recover the general flatness of the object, but

lose all fine surface detail. Finally, in the bottom row, we show our optimized PS+PG fusion

results. We retain both the overall flat shape of the book surface while recovering the small

wrinkles and abrasions present on the surface of the book.

In order to test our framework in more general settings, we have tested our method

on several additional objects with complex geometry and fine surface detail. As shown

in Figure 2.6, our framework produces accurate 3D reconstructions that maintaining both

global accuracy and high precision. The results are far superior to 3D reconstructions using

either PS or PG alone.

2.5. Conclusion and Future Work

We have presented a new technique using a PG camera attached to a flashlight source

to estimate 3D lighting positions for more robust photometric stereo 3D surface reconstruc-

tions. The resulting light position estimates are more accurate than conventional far-light
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directional estimates or near-light position estimates and consequently produce more accu-

rate normal maps. We also demonstrate that the PG surface information can be fused with

the PS normal map output for surface reconstruction that retains both the fine details from

PS and accurate global geometry from PG. We have demonstrated how to use a simple setup

to acquire high quality 3D reconstruction results of several cultural heritage objects. Our

initial results also give rise to another question: if fusion between poor normal recovery and

good PG data produces a reasonable result, is the improved PS performance by accurate

light position estimation even necessary? Further analysis is necessary to conclusively com-

pare our results to fusion results that do not attempt to improve PS performance, but we

believe that at the very least better input data from PS will not perform worse than other

fusion methods and is likely in most cases to perform better. We hope our method will

empower conservators and conservation scientists with new tools for simple, inexpensive, 3D

acquisition of cultural heritage artifacts. It is our belief that doing so will open the doors to

new applications in monitoring the deterioration of objects and help inform new methods of

damage prevention and preservation.

There are several possible directions for future work. Photometric stereo, technically, is

a fix-view 2.5D reconstruction method that could not deal with the scene with lots of depth

changes. In the future, we are interested in merging multi-view information to account for

artifacts that photometric stereo can create and produce a high-quality surface detail model.

On the other hand, our light source estimation method could be extended to non-point or

non-isotropic light sources, an extension applicable to nearly all real-world use cases. By

performing PG camera pose estimation on both the PS camera and the PG camera, the full

surface of a convex or more complicated surface shape may be recovered. From a systems

perspective, the PG camera and flash component could be miniaturized (e.g. replaced with
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a point-and-shoot camera) to allow for greater freedom by the operator and quicker overall

capture times. Two or more of these camera/flash units could be synchronized and pro-

cessed to capture bidirectional reflectance information and ultimately used to recover more

sophisticated material characterization jointly with surface shape. We are also interested

in investigating more sophisticated PS algorithms that can handle difficult cases such as

shadows and non-Lambertian reflectance. Last but not least, although it is quite difficult

to have a real ground truth to benchmark a 3D reconstruction system, we would still like

to compare our framework with state of the art 3D acquisition method on cultural heritage

application in the nearly future.
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CHAPTER 3

Uncalibrated Photometric Stereo with Single Mobile Device

3.1. Introduction

3D imaging techniques have had explosive growth in both industry and academic research

during the last decade with a variety of applications. In the community of cultural heritage,

3D imaging has gained widespread popularity as a tool for documenting object condition [71,

23, 51, 58, 32, 22, 110]. 3D imaging methods can be loosely divided into two groups: passive

and active 3D imaging. Passive based 3D imaging, such as photogrammetry [117, 39] relies

on the reflected radiance from an object lit with ambient illumination to reconstruct the

object’s 3D surface shape. Active 3D imaging, such as photometric stereo (PS) [55], uses

a controlled light source, such as a flashlight, to illuminate the object and recover the 3D

surface shape. PS is a highly sensitive technique that is capable of recovering 3D surface

shape information on the scale of micrometers. For this reason, it has been widely used

for the visualization of works of art and artifacts. While PS has been explored extensively,

it still faces many fundamental challenges that limit its ease of use and has prevented its

widespread adoption as a collection survey tool in the cultural heritage community.

PS estimates the surface normal/shape from photos taken by a fixed position camera but

with varying lighting position and direction. By modeling the measured image intensity as

a function of the incident lighting angle, one can recover the surface normal and material

reflectance of each point on the object. The depth information of the object can then be

recovered by integrating the reconstructed surface normals. The material’s reflectance can
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also be interactively manipulated by the users for the purposes of visualization and may be

integrated into virtual reality (VR) head-mounted displays (HMDs) or augmented reality

(AR) displays. Conventional PS reconstruction techniques use a far-light assumption, which

assumes the position of the illumination light source is infinitely far away from the object. In

practice, this assumption is frequently violated due to the space limitations of the acquisition

setup. Without proper correction of the forward model, the violation of this assumption

introduces errors in the reconstruction of the surface normal.

In 2015, Huang et al. [58] introduced a near-light model that automatically estimates

the light source positions at the same time as the surface normal estimations increasing

the accuracy of both. However, to achieve these results, a light dome and high-end digital

single-lens reflex (DSLR) cameras, remote triggers, and flashlights were required. In this

chapter, we ask the question: Is it possible to achieve the same results as achieved in [58]

using a simplified imaging setup that is the user-friendly operation and portable enough to

be used in remote locations?

To this end, in Chapter 1, we proposed a streamlined framework with a dual-camera

setup and near-light model for PS reconstruction [145]. In this setup, DSLR cameras and a

flash are synchronized together: a fixed camera is used for PS capture, and a second camera

is attached to a flash to estimate lighting direction. A sequence of photos is taken as the

second camera is moved along an arbitrary path in 3D space. Detected features on the object

in each image are fed into a Structure from Motion (SfM) algorithm, which recovers the pose

of the second camera, and in turn, provides the 3D position of the flash fixed to this camera.

High-quality surface normals are then recover using a near-light PS algorithm, such as the

one proposed in [58]. In addition, a course point cloud recovered from SfM is fused with the

recovered surface normals, producing a high-quality depth map.



www.manaraa.com

47

Image Registration 
based on SIFT 

Features

Near-Light 
Photometric Stereo

Surface Normal Map

Photo shifting direction

Images Capturing

Figure 3.1. Overview of Shape from Shifting: Our shape-from-shifting
technique uses a mobile device camera to capture images around the object
with the built-in flash used as a source of illumination. SIFT-based image
registration renders the images to the same viewpoint but each with a unique
illumination direction. The synthesized images are further processed by un-
calibrated photometric stereo to acquire dense surface normal vector maps.

In this chapter, we try to further relax the system complexity. We draw inspiration

from this previous work to simplify photometric stereo acquisitions and innovate a simpler

un-calibrated method for surface acquisition of works of art. Here we introduce a near-light

PS technique that uses just a single camera for surface normal reconstruction. We propose

mobile shape-from-shifting (SfS), a robust 3D surface shape recovery framework that can

be used on a mobile device as shown in Figure 3.1. SfS uses just a mobile device and a

custom 3D printed widget fitted with crossed polarization filters placed respectively in front

of the camera lens and on the flash LED. Hand-held capturing is possible due to the compact
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size of the mobile device. The polarization filters are used to separate diffuse and specular

reflectance, in order to suppress normal reconstruction errors caused by specular reflections.

During capture, users simply turn on the built-in flash and capture a sequence of images of

the object surface. These images are pre-processed using scale-invariant feature transform

(SIFT) [82] to register object features in each frame. Then, a near-light PS algorithm is used

to recover surface normals from these pre-processed images. In Table 3.1, we summarize and

compare the proposed Mobile SfS with the 3D imaging techniques frequently used in cultural

heritage. Our proposed method significantly reduces the complexity of PS acquisition so that

images may be captured in nearly any setting. We show that our method produces similar

quality 3D surface normal reconstructions to those achieved using a lighting dome in a

laboratory.

Imaging
Techniques

Price System
Complexity

Acquisition
Time

In the
Wild

Portable

Laser
Scanner [71]

$$$ High Hours Yes Yes

PS with
Dome [25]

$$$$ Medium ∼ 30 Minutes No No

Mobile SfS $ Low < 1 minute Yes Yes

Table 3.1. Comparisons of specs between our proposed Mobile SfS and two
standard techniques.

3.1.1. Contributions

• A novel PS surface normal reconstruction framework (SfS): In this chapter,

we propose a novel PS surface normal reconstruction framework that uses only a
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single camera and flash on a mobile device. We develop an image processing pipeline

and near-light PS reconstruction algorithms for the novel framework.

• A Simple, Cost-effective Solution: Our technique requires only a mobile device.

Optionally, an add-on widget may be used to increase performance for highly specu-

lar objects. Previously, polarization has been widely used in light dome setups [25] to

improve normal reconstruction, but calibrating polarizing filters is time-consuming

and error-prone. Mobile SfS uses a 3D printed widget with just two polarizers,

making it cost-effective and easy to use.

• Portability and Accessibility: Since Mobile SfS only requires a mobile device,

such as an iPhone, and a small widget, it is very portable and user friendly. We

believe Mobile SfS will be a powerful tool for conservators because it drastically

simplifies the 3D surface acquisition process by allowing objects to be scanned in

their natural environment and without the need of calibration hardware such as a

mirrored ball.

• Mobile SfS for different materials and scales: In this paper, we have demon-

strated that Mobile SfS can work for ceramic, stone, and paper objects of various

physical proportions.

3.2. Related Works

3.2.1. Image-Based modeling and Photogrammetry

Developed in the 1990s, image-based modeling is a technique that utilizes a collection of

images to create a three dimensional model [27]. To determine the 3D location of points

within a scene, traditional photogrammetry methods require the 3D location and pose of the

cameras, or the 3D location of a series of control points to be known. Structure-from-Motion
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(SfM) [48] removed this requirement, simultaneously reconstructing camera pose and scene

geometry through the automatic identification of matching features in multiple images.

3.2.2. Photometric Stereo

Photometric stereo [140] has often been used to recover high fidelity surface shape from

image intensity. Original PS formulation assumed Lambertian reflectance and single color

point light source. However, those constraints make it impractical to real-world conditions.

Anderson et al. [8] adapted multi-spectral light source into the illumination model. Georghi-

ades [42] used Torrance and Sparrow [128] to model both diffuse and specular reflectance

information with uncalibrated PS. Zickler et al. [150] recovered specular surface with pho-

tometric invariants under known illuminant color. Researchers also tried to use different

cameras and reflectance model to attack the problem. The recent work of Mecca et al. [88]

considered a perspective camera model to deal with non-Lambertian effects. Khanian et

al. [64] combine Blinn-Phong [16] reflectance model and perspective projection to deal with

complex real-world applications with many specular highlights.

3.2.3. Separation of Diffuse and Specular Reflections

Surface reflectance is a well-studied research problem in computer graphics. In 1985, Shafer [114]

proposed the Dichromatic Reflectance model and utilized color images analysis to separate

surface reflection into ”diffuse” and ”specular” components. Because of the different spectral

distributions for diffuse and specular reflection under dielectrics, the method easily separates

them in RGB color space. Klinker et al. [65] also developed a method based on color his-

tograms. To get more accurate and concise results, researchers kept pushing the color-based

methods to the limit. [69, 76, 75, 84, 122, 123, 146] In addition to color-based techniques,
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several hardware-based approaches have been introduced. Lamond et al. [68] use controlled

illumination to exploit specific frequency behaviors of reflectance functions for separating

diffuse and specular components. Polarization can also be used to separate diffuse and spec-

ular reflections. Wolff [138] demonstrated the use of cross-polarized filters, using two images

captured with vertical and horizontal polarizers in front of the camera to efficiently separate

diffuse and specular reflection components. Nayar et al. [89] combined polarization and color

information to separate diffuse and specular reflections. Significant work from Ma et al. [83]

described the use of polarization differential images and spherical gradient illumination to

perform photometric stereo for acquiring high-quality surface normal with a small number

of images.

3.3. Mobile SfS

3.3.1. Hardware Setup and History Collection Samples

Hardware Setup:

Two polarizers with opposite polarization directions (marked with blue boxes in Fig-

ure 3.2(a)) were attached to the camera and flashlight on an iPhone 6 through a custom 3D

printed add-on component as shown in Figure 3.2(b). Specifically, these two polarizers were

cut from the same polarization film. The polarizer on the flashlight was first glued on the

add-on component, and the orientation of the polarizer on the camera was carefully tuned

and fixed at the position of extinction. The total cost for the polarizers and 3D printed

component is less than 5 USD.

Historcal Artworks:
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Lighting

Camera

Mobile device

Polarizer
(a) (b)

Figure 3.2. Mobile SfS hardware: (a). two polarizers with opposite polar-
ization are attached to the camera and the flash light of the mobile device,
respectively; (b). photo of our prototype Mobile SfS with an iPhone 6 and a
custom 3D printed widget.

(b). Original Aztec calendar stone(a). A duplicate of Aztec calendar stone (c). Bahá'í Temple (d). French illuminated manuscript

Figure 3.3. Samples for evaluation with Mobile SfS: A duplicate (a) of
Aztec calendar stone (b); a portion of the wall of Bahá’́ı Temple (c); and a
page of an old manuscript (d).

Three artworks with different materials and scales were evaluated with our prototype

Mobile SfS. The first sample is a duplicate (Figure 3.3(a)) of Aztec calendar stone [1] which

dates back to 15th century in Mexico and is housed in the Mexico National Anthropology
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Museum as shown in Figure 3.3(b). The second sample is a portion of wall of Bahá’́ı Tem-

ple [2] (Figure 3.3(c)) built in the 1930s and located in Evanston, IL. The third sample is

a parchment page of a French illuminated manuscript, as shown in Figure 3.3(d), Suffrages

from a Book of Hours [10], dating from the 1460s-1490s, which belongs to the permanent

collection of the Isabella Stewart Gardner Museum in Boston.

3.3.2. Acquisition Procedure

History collection

P
𝑛

Camera

Flush light

Figure 3.4. Acquisition procedure with Mobile SfS: Hand-held Mobile
SfS faces to the object. Slightly shift the phone and take one image at each
position. Nine images are taken in this paper for the surface normal recon-
struction.

As shown in Figure 3.4, the phone is held by hand at about 30 cm from the samples

(depending on the size of the imaging area and the scale of the surface profile). A sequence
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of photos (9 images in this paper) are captured by sequentially moving the camera marked

with a dashed line in the figure. During capture, the focus, white balance, and exposure

of the phone camera are set to manual. Due to the limited power of the iPhone flash, the

examples shown were captured in a dark room or in the evening to minimize the effect of

ambient light.

3.3.3. Reconstruction Algorithms

Scene

Nine frames 
[𝐼"#$% , 𝐼"#$' ,… . , 𝐼"#$* ]

Registration for 
the nine frames Image crop

Figure 3.5. Image pre-processing: Step 1: nine images are captured; Step
2: images are registered with the SIFT function; Step 3: images are cropped
to display the same region.

Using this pipeline, we have acquired a set of diffuse reflection images where each surface

point is illuminated by k lights and k different viewpoints [I1
raw, ..., I

k
raw]. In order to establish

the conditions necessary to measure the surface shape by photometric stereo, all the images

need to be captured from the same point of view. Likewise, a Lambertian surface will

diffusely reflect light with an intensity proportional to the cosine of the illumination angle,

regardless of the observer’s angle of view. We meet these requirements by performing a
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geometric transformation to render each captured image with a single viewpoint, as shown

in Figure 3.5.

The transform is calculated by identifying a set of features in each of the captured

images [F 1
1 , ..., F

k
j ] using the SIFT feature detection algorithm [82]. Correspondences between

features in all images, as well as identification of outliers, are found using RANSAC [35].

With these data as inputs, the transform between the source and target images is used to

estimate a homography matrix [H1, ..., Hk−1]. Once each image is transformed through the

homography matrix, the collection of images is thus registered [I1
reg, ..., I

k
reg] to the target

viewpoint.

Next, the registered images [I1
reg, ..., I

k
reg] are used as the input into a near-light uncali-

brated PS algorithm to accurately recover surface normal vector and albedo images. Similar

to Xiang et al. [58], we assume the mobile phone camera to be linear and model surface

intensity by minimizing the following energy function:

E(Lk, ek, Np,p, A
′
p) =

∑
p,k

(
Ipk −

NT
p (Lk − p)

‖Lk − p‖3
ekA

′
p

)2

. (3.1)

where p is the each surface point, N̂ = (N̂x, N̂y, N̂z), A
′
p = (A′px, A

′
py), denote the surface

normal and albedo, Lk denotes the 3D position of the k-th light source and ek is represented

the lighting intensity. To simplify and accelerate the reconstruction process, we also take the

3D position from homography estimation as the initial 3D lighting position. The 3D lighting

position would interactively update while estimating the albedo and surface normal.

Note that conventional photometric stereo usually requires more than 10 images to get

quality surface reconstruction. With Mobile SfS, we are able to use only 9 images to recon-

struct the surface geometry.
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3.4. Experiments and Results

Three case studies using artworks, as described above, are performed with our prototype

Mobile SfS setup to demonstrate the reconstruction of surface normal vector maps and its

versatility on a variety of materials.

3.4.1. Plaster Replica of an Aztec Calendar Stone

To qualitatively evaluate our mobile SfS, we first performed the experiment with the replica

of an Aztec calendar stone and compared our normal map reconstruction to one captured,

from the same object, in a light dome. The Mobile SfS device was placed about 30 cm

away from the object surface, facilitating a small region of interest to be captured but at

high resolution. Larger fields of view can be captured, albeit with the trade-off of lower

resolution. The same region of the stone was imaged with the light dome. We also compared

the normal map reconstruction with the same mobile phone, with and without polarizers.

Sequences of nine images are used for the normal map reconstruction for our Mobile SfS,

while eighty-one images are used for the normal map generation for photometric stereo with

a light dome.

In Figure 3.6(a) an RGB photo of the imaged portion of the stone is shown with a close-

up view of the nose region. Normal maps produced respectively from a light dome and by

Mobile SfS without polarization filters are shown in Figure3.6 (b) and (c). Compared to

the normal map from the light dome (Figure 3.6(b)), the normal map generated using the

proposed method (Figure 3.6(d)) retains the global shape information of the test sample.

There are, however some notable differences in all three captures. Specularly reflected light

from the object is removed for the normal map reconstruction in Figure 3.6(d), via polarizing
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filters, to avoid introducing errors in the normal map generation. Thus when compared to

Figure 3.6(c), where specular reflections are strong, fewer high-frequency fine details such as

the lines on the close-up nose region may be observed in Figure 3.6(d). Likewise, the light

dome capture in Figure3.6 (b) also lacks these high-frequency details but for the reason that

the camera is placed much farther away from the surface than in the SfS setup.

If we reconsider the mathematical model for photometric stereo, most algorithms, in-

cluding the one described in this chapter, assume that the object has a Lambertian surface.

However, no object in the real world is pure ’Lambertian’. Therefore, our proposed method

takes advantage of crossed-polarization to suppress specular reflections to better obey the

cosine illumination conditions imposed by the photometric stereo model. Moreover, with

the specular highlight suppression, it could contribute to better viewpoint registration in the

first step. Using the SfS setup, we are thus achieving improved accuracy of the reconstructed

normal map, as will be discussed below in more detail.

3.4.2. In-Situ Measurement of Architectural Elements: Bahá’́ı Temple

To evaluate the Mobile SfS on different materials and its capability for imaging ’in the wild’,

we performed experiments on the wall of Bahá’́ı Temple located in Wilmette, Illinois. Nine

images were taken at night, placing the camera about 30 cm from the wall as had been done

in the last example.

Compared to RGB photo (Figure 3.7(a)), the surface information of the wall can be

generated with our proposed method as shown in Figure 3.7(b). The surface information

matches with the RGB photo, and the proposed method provides fine surface information

about the wall structure. Another important observation is that the generated surface shape

reveals more detail than the RGB image, which lacks contrast and texture.
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(c). Normal map by Mobile SfS without polarization filters(a). RGB image the sample

(b). Normal map by conventional near-light PS with light dome (d). Normal map by Mobile SfS with polarization filters

Figure 3.6. Surface normal for the plaster replica of an Aztec calendar
stone: (a). the photo of the imaged sample; (b). the surface normal generated
with near-light PS using light dome; (c). the surface normal generated using
mobile SfS but without polarizers; (d). the surface normal reconstructed with
the proposed mobile SfS. Close-up images show the ”nose” on the plate. Scale
bar: 5 cm.

Since the normal map of the sample is generated, the object can be rendered as shown in

Figure 3.7(c). All structure and fine details can be seen from the 3D rendering. This helps

digitally document the priceless artwork and protect the samples.

3.4.3. Surface Shape Measurement of An Illuminated Manuscript Page

To assess the capability of the Mobile SfS to discern features no larger than a few hundred

micrometers across, we performed a further experiment on a mid-to-late 15th-century French

illuminated manuscript page. Nine images were extracted from a much larger array of images

acquired by a macro web-camera rastered across the surface. The overall RGB image is

shown in Figure 3.8(a). These shots were acquired at about 2-centimeter away from a page

of the manuscript. The technique makes it possible to observe individual brush strokes and

obtain in-depth information on how the manuscript was technically constructed, as shown
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(a). RGB image of portion of Bahá'í Temple’s wall (b). Normal map of the sample with Mobile SfS (c). 3D surface rendering at a novel viewpoint

Figure 3.7. Surface normal for the architectural elements: (a). photo
of the region of Bahá’́ı Temple which is been scanned; (b). the surface normal
generated with mobile SfS; (c). the rendering with surface normal generated
with mobile SfS. Close-up shows the detailed feature on the stone. Scale bar:
10 cm.

in Figure 3.8(b). We can also apply the 3D rendering to show the object’s topography

by separating color from the surface shape, which allows us to determine the presence and

extent of 19th-century restorations. Hence, using these techniques, it may be possible to

differentiate between the original illuminations and later restorations by correlating these

topographic differences with the stylistic variations.

3.5. Discussion

Many historical artworks have specular surface such as those made of plaster, paper,

and stone materials. The intensity of these specular reflections is often too strong to make

accurate surface shape reconstructions of these materials. The reason for this is that in

photometric stereo, the surface of the object is assumed to be characterized by a Lambertian
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(b). RGB photo of the interested region (c). Normal map of the sample with SfS(a). RGB photo of the page

Figure 3.8. Surface normal for a page of the manuscript page: (a). the
RGB photo of portion of the page of the manuscript; (b). the surface normal
reconstruction with mobile SfS for that region. Scale bar: 5 mm.

model so that photons can be collected from different illumination angles and the intensity

photons directed to the camera is only affected by the angle of the incoming illumination. It

thus follows that under conditions where specular reflections dominate the photometric stereo

will not produce an accurate assessment of the surface shape. In practice, reconstruction

made using devices such as a light dome simply ignore specular reflections and assume that

Lambertian reflections dominate the total light received by the camera. Clearly, this practice

introduces error to the reconstruction. We show that it is possible to eliminate this source of

error using the mobile SfS framework described here. In our set-up, the specular reflections

are removed by the crossed polarizers covering the light source and detector. From the

visualization point of view, specular information is desirable since it contains high high-

frequency information on the surface shape of the object. Based on this observation, we are

currently designing a method to separate the diffuse and specular reflection, but record both

of them to be used for accurate rendering of object surfaces.
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We have evaluated the prototype mobile SfS on different materials, as described above.

Since artworks are made with different materials as well as stored and/or situated in different

areas, it is very useful for the cultural heritage community to develop methods that can

work under these varied conditions. We believe that our method affords conservators an

accurate and precise surface shape evaluation method with simple and widely available tools–

a smartphone device. We believe this method will improve the efficiency of art conservators

to document the condition of many works of art rapidly.

We also note that taking photos with a flying drone has gained popularity and atten-

tion recently. It allows researchers to take photos of landscapes that were once difficult

to reach, such as the top of the Bahá’́ı temple. However, these regions are critical for the

conservation since conservators can not check frequently and ignore the problem due to the

limited access. Since only a small piece of add-on component is needed in our proposed

method, we can combine our small-size setup with the flying drone to provide a solution

for the conservators to check the 3D surface of those regions. We believe this would benefit

the community of architectural conservation who often need high-resolution data to assess a

building’s condition.

3.6. Conclusion

In summary, we have proposed a portable and cost-effective surface-shape imaging tech-

nique with an off-the-shelf mobile device. Our proposed method is demonstrated to scan

historical artworks with different materials and scales. Moreover, our Mobile SfS can be

operated in the wild, which greatly assists in the conservation of artworks in the wild. We

believe our Mobile SfS can be a very useful tool for lots of different applications, such as the

community of historical artworks.



www.manaraa.com

62

CHAPTER 4

Highly Reflective Surface Shape Estimation with Mobile Device

4.1. Introduction

Three-dimensional (3D) imaging techniques are now omnipresent in a multitude of sci-

entific and commercial disciplines. Industrial 3D inspection, medical 3D imaging as well as

3D documentation and analysis of art or cultural heritage are only a few examples of the

broad range of applications. The work introduced in this chapter is motivated by a specific

and challenging application of 3D imaging: The 3D measurement and analysis of highly re-

flective surfaces in the wild, i.e., , for objects that cannot be transported to a laboratory for

Figure 4.1. a) Handheld measurement of a stained glass painting with a mobile
device. The reflections of the screen are visible on parts of the glass surface
and reveal its three-dimensional structure. The measurement result (normal
map) is displayed in the zoomed inset. b) Basic principle of ‘Phase Measuring
Deflectometry’ (PMD): A screen with a fringe pattern is observed over the
reflective surface of an object. The normal map of the object surface can be
calculated from the deformation of the fringe pattern in the camera image.
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measurement. As a concrete example, we study the 3D measurement and analysis of stained

glass paintings, such as larger glass artworks, church windows, or glass reliefs. The shape of

the small glass pieces in a stained glass artwork is not necessarily flat! Over the centuries,

several glass manufacturers developed unique techniques to imprint unique three-dimensional

structures to the glass surface that reflects and refracts light in a very distinct way. These

unique 3D structures in the glass piece are a powerful tool to match the small glass pieces

in a stained glass painting to the individual manufacturers and to trace the circulation of

stained glass around the globe. The latter is of significant interest for the cultural heritage

community. We present a comprehensive 3D measurement tool that can perform this task

in a hand-guided fashion with unprecedented ease of use, to be adopted by a broad audience

of users with little to no technical expertise. In particular, we wish to provide 3D surface

measurement capability to untrained personnel like museum conservators and tourists.

3D image acquisition techniques can be roughly divided into methods for two categories

of surfaces: (diffuse) scattering and specular. Diffusely scattering surfaces are commonly

measured by projecting a temporally or spatially structured light beam onto the object

and evaluating the back-scattered signal. ‘Time-of-Flight’ [113] or Active Triangulation

(‘Structured Light’) [135, 112] are prominent examples. Another well-known principle is

‘Photometric Stereo’ [139], where the object surface is sequentially flood illuminated with

‘point’ light sources from different angles.

Unfortunately, the application of these principles to specular surfaces yields only limited

success. The reason for this is simple: specular reflections from a point light source scarcely

find their way back into the camera objective. A straightforward solution to this problem is

to extend the angular support of the illumination sources. This is the basic principle behind

‘Deflectometry’ [49, 57, 66], where a patterned screen replaces the ‘point-like’ light source
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(see Fig 4.1). This screen can be self-illuminated (TV Monitor) or printed. In Deflectometry

systems, the screen and camera face the object, which means that the camera observes the

specular reflection of the screen over the object surface. The observed pattern in the camera

image is a deformed version of the image on the screen, where the deformation depends

on the surface normal distribution of the object surface (Fig 4.1b). From this deformation,

the normal vectors of the surface can be calculated. In order to calculate a normal vector

for each camera pixel, correspondence between camera pixels and projector pixels must

be determined. A common technique to achieve this is with the phase-shifting of sinusoidal

fringes. The resulting ‘Phase-Measuring Deflectometry’ (PMD) [49, 66] has established itself

as a powerful technique that is used with great success in industrial applications, e.g. to

test the quality of optical components or to detect defects on metallic parts like car bodies.

Given a proper calibration, PMD reaches a precision close to interferometric methods [33,

94, 50, 13].

The task of digitizing specular 3D surfaces ’in the wild’ leads to several fundamental and

technical challenges of great scientific interest. Our goal is to develop a surface measurement

method for objects that are large and, therefore, cannot be transported to a controlled lab

environment. Besides a large FoV, the desired method should support a large variation in

surface normals and also achieve high spatial resolution. In principle, this can be achieved

using large-screen PMD systems, but these setups are bulky and cannot be applied ’in the

wild’.

Similar to the method mention in last chapter [144], we tackle this problem with mobile

devices (smartphone, tablet) to perform PMD measurements, i.e., using the screen to display

the patterns and the front-facing camera to image the object surface. Since the screen size

of mobile devices is limited, only a small angular range of surface normals can be measured
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in any single view [20, 129, 105, 46]. We overcome this limitation using an automated

feature-based registration applied to PMD measurements acquired from different viewing

angles. The multi-view measurements can be acquired in a hand-guided fashion. The features

are extracted directly from captured images so that external markers or fiducials are not

necessary.

For our mobile PMD system, we do not perform photometric and geometric calibration,

necessary to recover quantitative surface shape information. This is because accurate cali-

bration severely complicates the acquisition setup and makes it difficult to capture 3D shape

for objects ’in the wild’, which is the primary goal of this chapter. Without calibration, the

accuracy of our method is compromised for low spatial frequencies of 3D surfaces that are

reconstructed. This low-frequency bias produces limitations in the quantitative 3D surface

information that can be extracted. We sidestep this problem by exploiting a-priori knowl-

edge about our objects of interest (e.g. the stained glass examples in Fig. 4.2, or paintings

in Fig. 4.5). Their overall shape is mostly flat but also contains high-frequency 3D surface

shape information. This information is captured with high quality and can be used as fea-

tures to help recognize an object’s identity, e.g. by applying feature matching techniques

(e.g., ’SIFT’ [81]) to register normal maps captured from different viewpoints.

4.1.1. Contributions

• We demonstrate a hand-held Deflectometry system, able to measure specular 3D

surfaces ’in the wild’ over a large FoV. The system consists only of an off-the-shelf

mobile device, like a tablet or a smartphone.

• We introduce the idea of exploiting a prior knowledge about surface shape to avoid

the tedious calibration process necessary for multi-view registration and stitching
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of arbitrary 3D surfaces. Our method works well for objects that contain a small

amount of low-frequency 3D surface information but also posses interesting high-

frequency 3D surface features.

• We apply automated feature-based registration to stitch together different ’normal

maps’ of an extended object surface into a panoramic, wide-FoV normal map. To

our knowledge, our method is the first to enable hand-guided deflectometric mea-

surements without the need for a prior 3D pose information, tracking, or external

fiducials.

• We demonstrate the first registered and stitched normal map of an extended specular

object with large angular normal variation that was captured with a hand-held

system ’in the wild’ - a stained glass artwork (see Fig. 4.4e). In addition, we show

numerous examples of surface normal maps recovered from a variety of objects

captured ’in the wild’ from a single viewpoint.

4.2. Related work

‘Phase Measuring Deflectometry’ (PMD) is just one of many techniques that have been

introduced to measure the 3D surface of specular objects. As discussed, deflectometric meth-

ods are widely used in the optical metrology community for the ultra-precise measurement

of optical components, such as lenses, astronomical mirrors, or other kinds of free form sur-

faces. The power of the related approaches has been impressively demonstrated by many

researchers over the last decades [57, 66, 50, 120, 129, 56, 49, 34, 13]. It has been shown

that the principle is by far not limited to the procedure of phase-shifting sinusoidal fringes

(PMD). Correspondence between the screen and camera can be established in many dif-

ferent ways [134], including the utilization of binary patterns [19], patterns multiplexed in
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color space [129], or the application of the single-sideband demodulation trick, known from

’Fourier Transform Profilometry’ (FTP) [121, 56, 79, 92].

Considering the vast potential of the deflectometric principle, it is not surprising that

the computer vision community makes extensive use of it as well. However, the names of the

proposed methods mostly lack the word ’Deflectometry,’ and the related applications differ

from high precision metrology tasks in many cases. Nevertheless, similar techniques using

color fringes [124], lines [28], or even a light field created from two stacked LED screens [126]

are known. Passive methods that do not require a self-illuminated screen at all are used as

well: In [17], the reflection of color-coded circles observed by multiple cameras is exploited

(which also resolves the bas-relief ambiguity). Completely ‘screenless’ methods, such as [44,

61] analyze the environment or track prominent features (e.g. straight lines in buildings) used

to obtain information about the slope of specular surfaces. In general, the deflectometric

principle allows for any known pattern or structure to be used as a reference.

Of course, each of the techniques mentioned above comes with benefits and drawbacks.

For example, some of the techniques that use a static pattern instead of temporally phase-

shifted sinusoids are capable of ‘single-shot’ acquisition [56, 79, 92, 129]. However, this comes

not without a price: Many related methods deliver restricted lateral resolution or require the

object surface to be sufficiently smooth. Shifting the correspondence problem to the color

space (by applying a colored pattern) implies certain assumptions about the texture and

reflectivity of the object surface. All this might not be a big problem for the measurement

of lenses or mirrors, but it presents a significant challenge for cultural heritage applications

like the measurement of stained glass surfaces.

It should be noted that even ’Photometric Stereo’ techniques can perform the desired

tasks under certain limitations. For example, [60] and [130] use known reflectance maps of
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object surfaces to measure their 3D structure. Such approaches are especially beneficial for

partially specular surfaces, but fail when the surface is too shiny. Other techniques exploit

sparse specular reflections produced by photometric stereo measurements for 3D surface

reconstruction or refinement [21, 111, 90].

It should be noted as well, that mobile versions of Deflectometry have also been demon-

strated. The authors of [107], built a custom Deflectometry device compact enough to be

used inside diamond turning machines to measure milled free form surfaces in-situ without

rechucking. The authors of [105, 20, 129] even exploit the LCD screen and front camera of a

smartphone or tablet to perform deflectometric measurements. However, these ’mobile de-

vice’ systems only demonstrate results with limited FoV and coverage of surface normals. The

3D surface measurement of objects with high-frequency surface information is not addressed

in these researches. The authors of the previously mentioned research [107] circumvent the

problem of insufficient coverage of surface normals by rotating the object under the device

and fusing normal maps taken at different rotation angles. The respective transformations

are received from the rotation stages of the diamond turning machine. A similar approach is

used in [46]. However, free-hand guidance over the object with subsequent pose calculation

of the device is not possible. In comparison to previous work, we introduce a system capable

of free-hand guided 3D surface measurement ’in the wild’ for extended specular surfaces with

large normal variations.

This section describes the image acquisition and processing steps that enable uncalibrated

3D Deflectometry measurements with mobile devices. We demonstrate a set of qualitative

surface measurements that can be used to identify and compare characteristic surface struc-

tures for highly specular objects.
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4.3. Setup and image acquisition process

Our hand-held PMD system implementation consists of a consumer tablet that serves as

a measurement device (for the results shown in this work we used an NVIDIA Shield K1 or

an Apple iPad Pro 10.5”). An application runs on the mobile device to perform the image

acquisition process and transfer data to a host computer that performs the surface normal

calculation and panoramic stitching.

During image acquisition, the tablet displays phase-shifted sinusoidal patterns and ob-

serves the object with its front camera (see Fig. 4.1a). The tablet is positioned approximately

200mm above the object surface. PMD is a multi-shot principle, meaning that a sequence

of temporally acquired images has to be used to calculate one 3D image. During the mea-

surement, the display projects four 90◦-phase-shifted versions of a sinusoid in horizontal and

vertical direction. Different frequencies of the sinusoid can optionally be used as well. The

position of the tablet relative to the object has to remain fixed during the whole acquisition

process. Depending on the speed of projection and image acquisition, this can be a hard task

for the inexperienced user, if a handheld measurement is desired. For an optimal measure-

ment result, the tablet can be fixed with a respective mount. We discuss possible extensions

of our system towards a single-shot principle in section 4.6.

The front-facing camera objectives of mobile device cameras commonly have a short focal

length, which results in a large FoV. Unfortunately, this large FoV cannot be exploited in its

entirety by our system. This is because the device cannot be held closer to the object surface

than the minimum possible focus distance, and the LCD screen has limited angular coverage.

A valid PMD measurement can only be taken at image pixels that observe a display pixel
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over the specular surface. As a result, the number of pixels that produce valid measurements

can be as small as 25% of the imaging FoV.

4.4. Evaluation, results and discussion

In the following, we evaluate the surface normal map of several stained glass tiles [67],

and a large, 300mm diameter stained glass artwork. A photo of the stained glass objects is

shown in Fig. 4.2. The tiles have an approximately squared shape with an edge length of

about 50 mm and demonstrate a significant variation in the distribution of surface normals.

We first demonstrate the measurement and evaluation of the small stained glass tiles from

a single viewpoint, then demonstrate a ‘multi-view measurement’ of the large stained glass

painting.

Figure 4.2. Photograph of objects to be measured with our system. a-d)
Stained glass test tiles from the Kokomo glass factory [67], each with an edge
length of ∼ 50mm. Surface structure complexity and angular distribution of
surface normals increase from a to d: ’33KDR’ (a), ’33RON’ (b), ’33WAV’ (c),
’33TIP’ (d). e) Large stained glass painting (diameter 300mm), scanned with
our multi-view technique by 14 views from different angles and positions.
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4.4.1. Single-view measurement

Most of the tiles in our test set display a size and surface normal distribution small enough to

be evaluated from one single view. Each tile is placed at a position in the field of view, where

the reflected display can be observed. The intensity I(x′, y′) at each image pixel (x′, y′) can

be expressed as

I(x′, y′) = A(x′, y′) +B(x′, y′) · cos(φ(x′, y′)) . (4.1)

Eq. (4.1) contains three unknowns per pixel : The (desired) phase φ(x′, y′) of the si-

nusoidal pattern, that correlates display pixels with image pixels, but also A(x′, y′) and

B(x′, y′), which contain information about the unknown bias illumination and object reflec-

tivity. This means that at least three equations are required per pixel to calculate φ(x′, y′).

For each pattern direction, these equations are taken from the four acquired phase-shift im-

ages (the four phase-shift algorithm is very simple and, in addition, insensitive to second

order nonlinearities), where the intensity in each image pixel for the m-th phaseshift is

Im(x′, y′) = A(x′, y′) +B(x′, y′) · cos(φ(x′, y′)− φm) , (4.2)

with

φm = (m− 1)
π

2
. (4.3)

Finally φ(x′, y′) can be evaluated by

φ(x′, y′) = arctan
I2(x′, y′)− I4(x′, y′)

I1(x′, y′)− I3(x′, y′)
(4.4)
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This has to be done for each pattern direction, leading to phase maps φx(x
′, y′) and

φy(x
′, y′) for the horizontal and vertical fringe direction respectively. The acquired phase

maps are equivalent to the surface gradient in the horizontal and vertical direction plus a

low-frequency phase offset that is dependent on the relative position between device and

object, and any distortion present in the camera objective [66, 94]. In conventional PMD

setups, this offset is removed by employing a calibration process whereby the phase map is

first measured for a planar mirror, then subtracted from the measured phase. We avoid this

step by exploiting a priori knowledge about our objects, namely that their overall shape is

known to be mostly flat so that low spatial frequencies in the surface normal measurements

can be ignored. In this case, the unknown phase offset can be removed by simply high pass

Figure 4.3. Single-view 3D reconstructions (surface normal maps) of Kokomo
glass test tiles. ’33KDR’ (a), ’33RON’ (b), ’33WAV’ (c), ’33TIP’ (d). Measure-
ments are performed with mounted tablet and no room lights. e) Reconstruc-
tions of ’33RON’ and ’33WAV’ measured under normal office light (∼ 500lx).
e) Reconstructions for a handheld measurement of’33RON’ and ’33WAV’.
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filtering the unwrapped phase map. The high pass filtered phase maps φ̃x and φ̃y are then

equivalent to the surface gradient maps in the x- and y- directions. It should be noted

that the filtering operation also compensates for the nonlinear photometric responses of the

display and camera, avoiding an additional calibration procedure. Moreover, the assumption

of a mostly flat object resolves the depth-normal ambiguity of deflectometry measurements,

which typically requires two cameras to resolve [66].

The surface normal can be computed directly from the estimated phase maps via

~n =
1√

φ̃x
2

+ φ̃y
2

+ 1

·


φ̃x

φ̃y

−1

 , (4.5)

where φ̃x and φ̃y denote the gradient for the horizontal and vertical direction, respectively.

Figure 4.3 shows the calculated normal maps of all four tiles. The normal maps are shaded

with a specular finish and are slightly tilted for visualization purposes. It can be seen that

the characteristic surface structures important for the identification process are well resolved.

The black spots in the normal maps are produced by surface points where the surface normal

resulted in no measured signal, i.e., the camera was not able to see the display.

To test the robustness of our qualitative measurement results against different environ-

mental conditions, we additionally acquired measurements for two of the four tiles with

ambient room lighting and with performing a hand-held measurement without mounting the

device. The results are shown in Fig. 4.3 e and f.

The measurement captured with ambient room lighting (Fig. 4.3e) shows no significant

degradation in performance. This is understandable because the brightness of the room light
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was moderate (regular office lights, illuminance ∼ 500lx), and the SNR was not reduced sig-

nificantly. Under these conditions, the four-phaseshift algorithm effectively compensates for

bias illumination. For the free-hand guided measurement, motion artifacts in the evaluated

phase map are expected. These artifacts can be seen at the slightly blurred edges in Fig.4.3f.

The fact that the visible artifacts occur ‘only’ at edges is a consequence of the low frequency

ν = 1 (corresponding to one sinusoidal period displayed over the entire width of the screen)

used to acquire these measurements. Higher frequencies would result in more prominent

artifacts, for example, commonly observed in triangulation-based fringe projection.

4.4.2. Multi-view measurement

A single view measurement is not enough to capture a sizeable specular object with large

normal variation in its entirety. This is not only because of the limited effective FoV of mobile

devices but also because the large normal variation of some surfaces cannot be captured from

a single viewing angle (see e.g. Fig. 4.3d). As discussed, our solution to this problem is to

acquire and register multiple phase maps of the object surface, while our system is positioned

by hand at different viewpoints. In this section, we show qualitative results that demonstrate

our approach. We study a circular shaped glass painting with a diameter of 300 mm. From

the magnification window in Fig. 4.2e, it can be seen that the glass pieces in this painting

exhibit high-frequency surface features. Moreover, some glass pieces are milky. For the

results shown below, we scanned one half of the glass painting by acquiring 14 single views

under different viewing angles and positions.

To assist in registration, we acquired an additional ‘white image’ (image of glass painting

only illuminated by diffuse room light) at each viewing position. The registration trans-

formation for the normal maps acquired at each single view is calculated from these ‘white
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images’. Performing registration with the ‘white images’ was found to be more robust than

registration with calculated normal maps. For registration, we used the feature-based reg-

istration algorithms provided by the Matlab Computer Vision Toolbox. It should be noted

that the usage of images which are captured under diffuse illumination is beneficial in this

case since the diffuse illumination makes the object look similar from different viewing angles.

No strong specular reflections (which look different from different viewing angles) disturb

the feature extraction of the registration algorithm. With this trick, we are able to register

subsequent views without applying markers or other fiducials onto the object surface, just

by using the texture of the object itself. Figure 4.4 shows ‘white images’ of two subsequent

views, their detected and mapped features, as well as the registration result.

It can be seen that the feature extraction and the subsequent registration transformation

is applied on the whole FoV of the camera (not only on the limited effective FoV in the

middle) in order to detect a large number of features with high quality. In this case, it

can be beneficial to perform a simple internal calibration of the front camera (e.g. with a

checkerboard) to compensate for distortion. This can reduce the registration error signifi-

cantly. It should also be noted that such a distortion correction was avoided for the previous

single-view measurements since most of the signal was measured in the middle of the FoV,

where the distortions are small. In the future, we plan to develop methods that estimate

the distortion parameters of the camera during registration without the need for an explicit

calibration procedure. Figure 4.4e shows all 14 views after registration and stitching. Most

parts of the object’s surface are densely reconstructed, and the high-frequency structures of

the individual glass pieces are visible. However, some normals are still missing, mostly from

the blue glass pieces in the painting. The structure of these pieces displays extraordinary
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Figure 4.4. Multi-view normal map 3D reconstruction of large stained glass
painting using image-based registration. a) and b) ’White images’ (images
captured with black screen and diffuse room light illumination) before dis-
tortion correction. c) Detected and mapped features in the two subsequent
’white images’ (color-coded by green and magenta). d) Registered ’white im-
ages’. e) Visualization of stitched multi-view normal map result, consisting of
14 registered single-views.



www.manaraa.com

77

high hills and deep craters, producing a wide distribution of normals that would require

more than 14 views to be measured effectively.

4.5. Additional experimental results

Although the presented method was motivated by the 3D measurement of stained glass

artworks, the system is in no case restricted to this specific object type. A 3D surface

acquisition with our uncalibrated method is possible as long as the overall shape of the

object is flat, and the surface under test is relatively shiny.

Figure 4.5a-c displays the surface measurement of an oil painting. The three-dimensional

analysis of painting surfaces is also of great interest to the cultural heritage community. The

ability to separate surface texture from its shape or slope data is a valuable tool to understand

different painting techniques (e.g. by looking at the directions of brush strokes). Monitoring

of pigment degradation in paintings [100, 119, 109] is another application that does not work

reliably by only looking at captured 2D images. Our mobile 3D imaging method is well suited

for the analysis of paintings ’in the wild’, i.e., directly on the museum wall. Figure 4.5a shows

an image of a measured oil painting. The surface normals of the black region in the red box

(approximately 70mm × 80mm) are acquired with our method. For better visualization of

the hills and valleys of the brushstrokes, the acquired normal map is integrated into a depth

map, using the Frankot-Chellappa surface integration algorithm [37]. Figures 4.5b and c

show the calculated depth map from two different perspectives (z-component exaggerated

for display purposes). The brush strokes, and even the underlying canvas can nicely be

resolved.

Another potential field of application is the 3D acquisition of technical metallic surfaces.

Figure 4.5e displays the acquired normal map of a metallic key (70mm height, Fig. 4.5d),
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shaded with a specular finish. The normal maps of a 5 cent and a 10 cent US coin (21mm

/ 18mm diameter) are shown in Fig. 4.5h. Imprinted letters or symbols can be resolved,

Figure 4.5. Deflectometric measurements of different surfaces: Paintings, tech-
nical, metallic, enameled ceramic, and fluid surfaces. a) Image of measured
painting with marked 70mm× 80mm measurement region. b) and c) Surface
shape of the marked region, calculated by integration of the acquired normal
map. Brushstrokes and canvas can nicely be resolved. d) Image of measured
key (70mm length). e) Measured normal map of the key. f) Water drops
(20mm× 15mm) on an enameled ceramic surface (coffee mug). g) Evaluated
normal map. h) Normal maps of a 5 cent and a 10 cent coin. i) Circuit board
with marked 22.5mm×15mm measurement region and measured normal map.
Each metallic circle has a diameter of ∼ 2mm
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both for the key as well as for the coins. Figure 4.5i displays the normal map of a circuit

board. The diameter of one single metallic ring is only about 2mm. In the last example,

we demonstrate the capability of our method to measure fluid surfaces, e.g. for the analysis

of surface tension. Figure 4.5g shows the normal map that was acquired from water drops

on an enameled ceramic surface (coffee mug). The water drops are arranged to form the

letters ‘N U’ (Fig. 4.5f). The shape of each drop is clearly visible from the normal map. In

the future, we plan to use our system to measure dynamic fluid surfaces with a single-shot

PMD technique, such as [56, 79, 92, 129]. In addition, we are developing algorithms capable

of recovering surface normals from objects with much more complicated reflectivity.

4.6. Conclusion and outlook

In this chapter, we presented a mobile Deflectometry system that is able to measure

specular surfaces with a high normal variation and much larger than the system’s initial

FoV in a hand-guided fashion. In order to sample the entire object surface densely with high

resolution over a large FoV, we applied a feature-based registration to stitch normal maps

from different viewing angles and positions. The system can be moved by freehand from one

viewpoint to the other. No external guidance or fiducials affixed to the object are necessary.

We demonstrated the 3D surface measurement of stained glass surfaces using both single

view and registered multi-view measurements. As a proof of principle, we scanned one half

of circular stained glass artwork with 300 mm diameter by stitching together 14 single views.

In a second experiment not shown in the work, we tried registration with 28 views. However,

global registration errors were significant so that the first and last views did not fit together

after one pass. This is a well-known problem for surface measurements with registration [9].

Reducing the global registration error is one of our main goals for future work.
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Our evaluation process exploits a prior knowledge about the object to avoid extensive

fringe and display calibration, which also solves the depth-normal ambiguity problem without

the use of a second camera [66]. In the future, we seek to develop self-calibrating algorithms

for multi-view measurements. Our plan is to apply a non-rigid registration on our data and

obtain the information about the distortion from the calculated deformation fields. Moreover,

we will work towards obtaining quantitative measurements without calibration. This work

will build upon previously demonstrated self-calibrating PMD setups, e.g. shown in [94].

Although we have shown that hand-held measurements are possible with our system,

PMD is commonly a multi-shot principle, and can, therefore, introduce motion blur. Single-

shot PMD techniques that rely on single-sideband demodulation, e.g. like introduced in [56,

79, 92] will not work on objects like stained glass paintings because of the severe bandwidth

restrictions. In the future, we want to explore other single-shot and/or motion-robust De-

flectometry techniques that exploit additional modalities to solve the ambiguity problem.

Examples of how such problems are solved in the field of line triangulation can be found

in [9, 136, 135, 134, 101]. Our future goal is to develop similar methods for Deflectometry.

Ideally, the user only needs to continuously wave around his device in front of the object to

obtain a dense 3D reconstruction after a few seconds.

Lastly, to foster the adoption of our technique by a broad audience, we plan to make our

measurement App publicly available so that anyone with a mobile device can make 3D surface

measurements of specular objects. Each user will be able to transform his phone or tablet

into a 3D measurement instrument. We envision this framework will serve as a platform

for crowd-sourced aggregation of surface shape acquisition/fingerprinting of unattributed

artworks around the globe.
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CHAPTER 5

Inverse Rendering Based Specular Surface Shape Estimation

5.1. Introduction

In the last decade, there are increasing interests utilizing surface shape measurement

for many applications in science and industry, such as biometrics, industrial inspection,

and cultural heritage. Common 3D scanning techniques such as laser scanning, structured

light, and photogrammetry has provided robust and reliable shape recovery for different

real-world applications. These commercialize 3D scanning methods could handle most of

the surface except for complex material such as a highly reflective surface, which is still an

open challenge in computer vision and computer graphics due to unique material reflectance

properties. Appearance modeling based shape recovery techniques such as Deflectometry

adapt specular reflectance properties in the image formation model, which use an extended

light source to recover the geometry of the highly reflective surface densely. Due to the law of

reflection, to densely recover different surface angle, a bulky and expensive hardware solution

is usually required for the deflectometry measurement and which constrain the development

of this powerful technique to utilize in the real-world tasks. Recent computational imaging

works ?? address the hardware-intensive problem for deflectometry using a compact hardware

system or even a mobile system. Nevertheless, these approaches are assumed relatively simple

surface geometry or leverage the other reflectance component for registration.

Another open challenge for deflectometry is the surface gradient field integration. In

the previous chapters, we propose several novel portable appearance-based shape recovery
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systems that cover both Lambertian and highly reflective surfaces. We demonstrate the ro-

bustness and portability of the systems using only off-the-shelf community hardware compo-

nents such as DSLR cameras, flashlights, mobile phones, and tablets. Similar to conventional

appearance-based shape recovery techniques, the image formation model of deflectometry use

surface orientation to represent the target surface. The surface gradients are normalized di-

rectional information in which there are multiple possible solutions of the surface along the

same normal direction. It is possible that by instead modeling the surface normal, directly

obtain the surface depth information that improves the surface reconstruction. If an accurate

and fully differentiable image forward model is available to provide an unbiased simulation,

this inverse problem could be solved by optimizing the differences between the simulation

and the experimental observation.

This chapter introduces a novel appearance-based shape recovery framework that lever-

ages the differentiable rendering as the forward imaging model and a simple direct depth

optimization of the surface instead of integrating the surface from surface gradient field. The

direct optimization can correct the biased measurements and avoid the bias introduced by

the normal integration to produce a more accurate surface geometry estimation. We also

incorporate the multiview observation into the joint optimization that could truly apply onto

a highly reflective surface that would fail with image feature-based registration. We compare

this approach to ground truth in simulation and show experimental results using a simple

portable system which is possible to apply on to mobile device or conventional computer

system.
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5.1.1. Contributions

• Multiview portable Deflectometry system: We present a simple system for

the free-form deflectometry capture system. Our system architecture is possible to

further extend to only using an off-the-shelf mobile device such as mobile phone and

tablet.

• Joint Multi-view optimization: Previous techniques estimate per-view surface

normal and then manually blend in multiple normal maps, which could potentially

increase the error in geometry estimation due to either bad viewpoint estimation

or noise per-view surface normal estimation. By contrast, we frame the normal

blending as a joint optimization problem that could jointly constrain the noisy

measurement.

• Direct depth optimization: Conventional appearance based shape recovery meth-

ods model the surface geometry as surface gradient. In order to obtain the 3D

information, it typically requires a normal integration, which could lead to the low-

frequency geometry bias due to the depth/scale ambiguities. Our methods leverage

rendering pipeline directly, optimization the depth information of the surface.

5.2. Previous Work

5.2.1. Multiview Deflectometry

’Phase Measuring Deflectometry’ is one of the specular surface metrology methods which

have been widely adopted into industrial inspection applications. By projecting phase-

shifting sinusoidal fringes pattern with an extending light source (e.g., a display screen), it
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could model the specular reflection to recover the surface shape information. Deflectome-

try methods have been widely used in the optical metrology community for high precision

measurements of highly reflective surfaces such as lenses, automobile bodies, and integrated

circuit boards. In principle, given the narrow specular reflection lobe, in order to cover

the wide range of surface geometry, either the extending light source or the camera should

densely sample across the whole positive hemisphere of the surface. This constraint limits the

portability and the robustness of the deflectometry system. Commercial PMD system [131]

requires a large LED screen and multiple cameras to cover different angles. In recent years,

researchers start to tackle this problem and come up with mobile versions of Delfectometry

systems with the minimal system. Röttinger et al. [107] customize a compact system for

machining inspection. The others [105, 20, 129, 137] adopt the LCD screen and camera on

the mobile system such as smartphone and tablet for robust and user-friendly deflectometry

capturing. However, with the limited size of the LCD and camera Field-of-View (FoV),

these systems could only demonstrate results with related simple surface geometry that the

surface normal could be covered by the miniature systems. Researchers start to leverage

multiview methods to cover the surface geometry with multiple measurements. Balzer et

al. [11] introduce a compact system bundled on an industrial robotic arm. They track the

transformation between different measurement positions and register the measurement with

the transformation. In the last chapter, we introduce the image-based registration pipeline

that exploits the diffuse component in the stained glass painting for feature extraction and

matching. Nevertheless, for highly reflective surface, it is still an open challenge to adapt

multiview measurement for the shape reconstruction.
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5.2.2. Normal Field Integration

For shape reconstructions techniques such as photometric stereo (PS) and deflectometry, they

model the shape information as the surface gradient field. It is necessary to perform gradient

integration process to get 3D information of the surface. In theory, the integral of a surface

point gradient/normal along any closed-loop (path) should be zero as the inverse problem

of the definition of the surface normal. In practice, the estimated surface normal rarely

fulfills this condition due to the noise aggregated in the estimation process. Moreover, since

surface normal is 2.5D information, the depth/scale ambiguities make this problem trickier

than in theory. By using the Poisson equation, Horn and Brooks [54] model the surface

with second-order finite differences approximations of the Laplacian and the divergence to

integrate the surface from gradient. It is robust to the noise input data and performs well

without any prior or parameters. However, it is really slow since it uses a Jacobi iteration

to solve the larger linear system, especially if the initialization is far from the solution. On

the other hand, Frankot and Chellappa [37] try to solve the problem with Fourier analysis,

which boosts the processing time and maintains robustness. However, their method still

suffers from the depth discontinuities and ambiguities problem. Queau et al. [103] came up

with a comprehensive review on many popular normal integration techniques. Nevertheless,

a robust and reliable normal integration method could be highly beneficial for the application

of PS and deflectometry.

5.2.3. Differentiable Rendering

Creating photorealistic images has been a major focus in the computer graphics community.

This effort has led to mathematical models and algorithms that can generate predictive and



www.manaraa.com

86

physically realistic images from known scene appearance factors such as camera position,

surface shape, surface reflectance, and the illumination of the scene. In order to physically

obtain realistic appearance factors from the real-world scene, inverse rendering problem has

also been investigated since the very beginning of the field [14, 99, 147, 87]. By comparing

the change between observed images and rendered images, inverse rendering aims to infer

the surface shape, reflectance, and scene illumination of real-world photography. In order to

seamless optimize these parameters along with the rendering process, Differential Renderer

(i.e. Neural Rendering) has been introduced to solve the problem.

Gkioulekas et al. [43] propose an optimization framework with material dictionaries to

model translucent materials with stochastic gradient descent. To deal with the more gen-

eral scene, Mansinghka et al. [86] use Bayesian probabilistic graphics model to infer the

appearance parameters. With the rising development of the convolutional neural network in

vision and graphics community, many learning-based 3D reconstruction and material infer-

ence techniques [74, 77, 151, 125, 73] have incorporated a differrentiable rendering layer to

adapt inverse rendering into the end-to-end network architecture. A general, flexible, and

easily integrated with deep learning differentiable renderer would come in handy. Similar

to Mansinghka et al., Loper and Black [80] introduce OpenDR, an approximate differen-

tiable renderer which could obtain derivatives of the model parameters by incorporating into

probabilistic programming framework. More recently, Li et al. [72] release redner with a

novel edge sampling algorithm for Monte Carlo Ray Tracing without approximation. Their

method could efficiently handle secondary effects such as shadows or global illumination with

gradient-based optimization, which has lots of potential for different applications in inverse

rendering and the generation of adversarial for neural networks. Liu et al. [78] propose Soft

Rasterizer, which is a truly differentiable renderer framework by modeling the rasterization
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process with probabilistic model blending, which ”soften” the traditional discrete raster-

ization and the nondifferentiabilities. In 2020, Ravi et al. [104] introduce PyTorch3D, a

open-source 3D library with optimized operators, heterogeneous batching capabilities, and

a modular truly differentiable renderer that could smoothly integrate with machine learning

framework PyTorch [98].

Our method exploits the novel differentiable rendering framework as the image forward

model. By incorporating the differentiable rendering and simple direct depth optimization,

our framework improves the multiview blending and normal integration challenges commonly

encountered in deflectometry techniques with joint multiview depth optimization. Also, our

hardware setup constraints relative to prior deflectometry methods could potentially extend

onto mobile device for a more portable and better user experience.

5.3. Direct Depth Estimation with Inverse Rendering Based Optimization

Appearance-based shape recovery methods have extensive history solving the inverse

problem with appearance factors. From photometric stereo [140] that model Lambertian

reflectance to deflectometry which specific for specular reflectance, there are intensive of prior

researches that work on high complexity inverse problem to isolate the surface shape from

appearance. In order to simplify the complexity of this problem, conventional approaches

come up with a particular image formation model that model surface geometry as surface

gradient and solve it with different mathematical approaches such as matrix inversion or

numerical optimization. To acquire 3D information of the surface, a normal integration step

is required. Moreover, these image formation models only model the appearance from a

single viewpoint for idealization.



www.manaraa.com

88

Figure 5.1. Inverse Rendering Based Shape Optimization Our frame-
work directly optimizes the surface depth information by exploiting the differ-
ential renderer, which could compute the derivative of the target parameter
(i.e., depth) during the forward rendering process. The depth estimation can
then be iteratively updated to incrementally minimize the objective function
between the measured appearance with the back-propagation process.

On the other hand, the conventional rendering systems use either rasterization or ray-

tracing to simulate the appearance of the 3D surface. If we instead have a render system

which could take surface depth and fixed scene parameters such as camera, light source and

reflectance information as input to render the appearance of the surface, we could directly

model the depth information and reference different viewpoints to form an optimization

problem as shown in Fig 5.1 with real measured appearance to reconstruct the 3D surface

information. However, without any knowledge of the render forward model, the optimization

would be exhaustive and time-consuming. Instead, we utilize a differentiable renderer that

could trace over the parameter gradient so that the optimization would be first-order instead

of zero-order, which could be more efficient and provide a better result.
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In our objective function, we try to minimize the error E, between the measured surface

image Î and the output of the forward operator R given the depth estimate D. All other

scene parameters λ are assumed to be fixed upon initializing the renderer.

E = minimize
x∈D

‖Î −Rλ(G(D))‖2 (5.1)

where G is the smoothing operator that enforcing the coarse-to-fine search with referencing

neighborhood surface point and constrain the noisy data input.

We choose the PyTorch3D [104] differentiable renderer, which is a free, open-source

software library written in Python as our forward renderer. It provides efficient operations on

triangle meshes and smooth integration with PyTorch. Both PyTorch and PyTorch3D could

utilize GPUs for acceleration, which could significantly improve the reconstruction runtime

performance. We design a custom shader in PyTorch3D, where it models the specular

reflectance for our rendering process. Also, in order to efficiently simulate the extended light

source (i.e., LCD display) as in our system, we customize the environment mapping process

to project the illumination patterns on to the surface instead of integrating the array of the

point light which would be very time-consuming and memory intensive.

Data preparation, scene setup, optimization, and profiling are implemented in Python

using PyTorch and PyTorch3D with GPU acceleration. We project the target depth map to

the triangle mesh and construct the rendered scene with the other fixed scene parameter such

as camera locations, display locations, and fixed shader maps. The renderer would storage

the derivative of the depth parameter in PyTorch tensors within the rendering. After each

rendering, we setup the back-propagation to optimize the depth map with Adam solver and
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the loss function in Eq 5.1. The optimization process will iteratively update the surface depth

information until the current surface appearance matches the real measured appearance.

5.4. Simulated Results

We conducted performance evaluations on simulated data using the rendering system

due to the difficulty in acquiring precise ground truth measurements over moderate-sized

physical scenes. We chose to test the quantitative fidelity of our framework using a human

face geometry, a convex surface, including a wide range of surface orientations.

We construct the rendered scene with pure specular reflectance and a deflectometry

system similar to our portable system. For each viewing position, we project 8 phase-shifted

sinusoid patterns similar to conventional PMD methods (4 vertical and 4 horizontal). To

simulate the captured appearance of the surface, we render a 4 by 4 grid capturing sequences

with 16 different viewing position, which we found it is efficient to cover various surface

orientations of the face. We start our optimization from a planar surface and then run the

optimization with Adam solver and learning rate 0.0003. We reduce our learning by 0.0001

for every 800 iterations, requiring about 2.4k iterations in total for convergence.

Figure shows the simulated result with the human face. Our method’s root-mean-square

error (RMSE) is 1.45 cm and peak signal-to-noise ratio (PSNR) is 35.75 dB. This shows that

our optimization framework achieve good depth reconstruction considering the overall scale

and the diversity of surface angle.

5.5. Acquisition System Architecture

To capture experimental data and demonstrate our framework’s robustness, we set up this

portable system consisting of a FLIR Blackfly S machine vision 5.0MP polarization cameras
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Figure 5.2. Simulated Human Face Depth Reconstruction Results
Comparison of our depth optimization reconstruction framework with human
face surface shown in (a), and ground truth depth map (b). (c) Our inverse
rendering base depth optimization result with simulated data produce high-
fidelity depth estimation. Depth error map compute the difference between
optimized result and ground truth which achieved good overall reconstruction
quality with < 1.5cm RMSE and > 30dB PSNR for 3D surface reconstruction.

with (BFS-U3-51S5PC-C) with Navitar 16mm C-Mount lens and a 15.6 inch Portable LCD

display. Similar to the concept and approaches in Chapter chapter 3, We utilize the linear
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polarization filters on both camera and the LCD display to perform cross-polarization imag-

ing to extract specular reflectance component. We leverage this novel sensor with on-sensor

polarizing filters. Each sensor pixel has its own linear polarizing filter, and the neighbor-

hood 2 by 2 pixels grid contains 4 (0 deg, 45 deg, 90 deg, and135 deg) equal distributed filter

orientation for polarimetry analysis. Although it only supports with industrial and scientific-

grade machine vision cameras, with its powerful functionalities, we foresee in the future that

it would be widely adapted on to consumer devices for different applications. The camera

and the display are rigid bundle together with a filming stand and which the system could

be either handheld by the user or mount on a tripod for optimal capture results. During the

acquisition, the LCD display project user-defined patterns and observes the surface reflection

with the camera. Lastly, a printed set of corner fiducial makers (i.e. ArUco Markers [40])

were affixed to the imaging area to provide tracking points for the pose estimation. Our

system architecture is relatively simple compared to the conventional deflectometry system.

The framework is highly possible to extend the capturing on to mobile device similar in

Chapter 4.

For inverse rendering measurement, it is critical to have the whole system to be carefully

calibrated, including the camera and light source. However, calibrating the geometric and

photometric characteristics for both camera and light source usually requires an extensive

calibration procedure. In the spirit of using a robust and user-friendly system for 3D re-

construction, our calibration procedure requires minimal equipment, and it is robust enough

for users without previous experiences and skillsets. Our calibration consists of two parts,

Geometry Calibration and Photometric Calibration for both camera and display.
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5.5.1. Geometric Calibration

In order to accurately reconstruct the shape information, first, we need to model the geo-

metric relationship for both camera and our light source.

For the camera, geometric calibration models each camera’s imaging transformation from

world to image coordination at each viewing locations. For a pinhole camera model, this

could be expressed in homogeneous coordinates as:

pi = AMpw, pw =

(
Xw Yw Zw 1

)T
∈ P 3,

A =


fx 0 cx

0 fy cy

0 0 1

 , M =


r00 r01 r02 t1

r10 r11 r12 t2

r20 r21 r22 t2


(5.2)

where pw denotes the point in world coordinates and pi as in image coordinates, A is the

intrinsic matrix that project the points from camera coordinate to image coordinate and M

is the extrinsic matrix that describe the camera pose.

The camera calibration is usually separated into two parts: intrinsic and extrinsic cali-

bration. In our system, we are using standard implementation of the OpenCV library [18] to

determine intrinsic parameter and camera distortion parameters in a one-time off-line proce-

dure. As for the extrinsic parameters, we utilize the ArUco Markers that were attached to the

corner of the imaging area and the intrinsic parameters to solve Perspective-n-Point(PnP)

problem for camera poses for each viewpoint.

On the other hand, for the light source, we also require knowledge of the posture and

position of the display with respect to the camera. If the camera faces the display directly,

the calibration is simple which project a patter on the display and solve the PnP problem
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Figure 5.3. Display geometric calibration We leverage a planar mirror to
calibration the display geometric relationship with respect to the camera.

as the camera intrinsic. Unfortunately, the display is not in the view of the camera in our

setup. This camera-display calibration problem [47, 38, 36] has been addressed for different

applications such as structure light system and conventional phase measuring deflectometry

systems. In order to solve this problem with minimal user effort, we adapt an planar mirror to

accomplish the calibration. The planar mirror is placed on the target plane which is in front of

the camera and the display, the geometric relationship of the components is shown in Fig 5.3.

The original point of the camera coordinate system {c} is set at optical center of the camera

and the original point of the display coordinate system {s} is set at the center of the display.

As shown in Fig 5.3, four ArUco markers were placed on the corner of the mirror which would
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be used to determine the transformation between the mirror plane (world coordination {w})

and the camera coordination. The camera captures the virtual image of the display {c}

which will be mirror-symmetrical to the original display. The transformation relationship

between the real display and the virtual display could be model by the nmirror which is the

normal vector of the mirror respect to the camera coordination and dw2c refers to the distance

between the mirror and the camera. By modeling the Householder transformation [30], the

relation between {s} and {c} can be calculated as:

(I3 − 2nmirrorn
T
mirror)Rs2c = Rv2c(I3 − 2e3e

T
3 ) (5.3)

(I3 − 2nmirrorn
T
mirror)Ts2c = Tv2c + 2dw2cnmirror (5.4)

where I3 is the 3 by 3 identity matrix, e3 = [0, 0, 1]T , nmirror = Rw2c[0, 0, 1]T and dw2c =

|nTmirror · Tw2c|.

5.5.2. Photometric Calibration

In order to accurately model how light propagates from the display to the surface and reflect

back to the camera, we need to know how the relationship between the radiance that the

display projected out and also the radiance arrived at the camera, which been interpret as

the pixel values in the images. First, we perform a photometric calibration with the camera

similar to [26], which captures multiple exposure values of the camera. By recovering the

camera response function, we could figure out the mapping between the reflected radiance

from the surface and the pixel values in the images.

Typically, to achieve optimal visualization quality, the display would apply gamma cor-

rection to compensate for the nonlinearity of the human perception response. Moreover, the
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LEDs of the LCD panel would also have nonlinearity response to the intensity. Since we are

using the LCD display as the extended light source to project grayscale ramp pattern, it is

crucial to model the mapping between the assigned pixel values and the projected intensity.

For the display radiometric calibration, there are plenty of off-the-shelf monitor calibrators

that could provide reliable photometric calibration for the display. Instead of using the

expensive off-the-shelf solution, we solve this problem with the existing component in the

system. We use the display to project series of pixel intensity (i.e., 0 to 255 for 8 bits display)

and capture the intensity by either direct observation or through a planar mirror. With these

images, we could construct an inverse look-up table, which we refer to as Camera-Display

Transfer Curve (CDTC). During the capturing process, we apply the projected pattern with

CDTC to maintain the linearity of the light source.

5.6. Experimental Results

To test out the capability and demonstrate the advantages of our framework in more

realistic situations, we choose two extreme cases a step mirror and a convex mirror that

fulfill the problems that we try to solve. These objects are both highly reflective surfaces.

Due to the memory limitation of our reconstruction pipeline, The appearance images are

measured with limited resolution(512× 512 pixel), and the optimized depth maps are set to

(41× 41 pixel) for the whole scene.

Depth ambiguities with normal integration: Fig 5.4 show our experimental result

for a scene with depth ambiguities problem. The test case consists of two planar mirror planes

with different depth levels. Conventional PMD technique model surface normal information

would only reveal both planes with flat surface orientation, which the normal integration

could not integrate the depth change. Our framework directly models the depth information
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in the optimization, which could reveal the depth difference between the two mirror planes.

Note that our experimental result operates with limited appearance images and depth maps,

which would produce noise for the reconstruction.

Figure 5.4. Experimental Capture, Step Mirror Comparison between our
depth optimization framework with conventional PMD reconstruction with
normal integration. The step mirror surface is shown in (a). Conventional
PMD reconstruction with normal integration shown in (b). (c) and (d) Our
inverse rendering base depth optimization result with render mesh.
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Wide variety of surface angle: We capture a convex mirror which contain wide

range of surface angle variation to show the capability of our joint multiview optimization.

As shown in Fig 5.5, our compact system could only cover about one-sixth of the surface

angle of this convex mirror within single view capture. We perform 9 different viewpoints

with efficient overlapping to cover the whole curved surface. With our joint multiview

optimization, we directly recover the smooth surface curve.

Figure 5.5. Experimental Capture, Convex Mirror The Convex mirror
shown in (a). (b) Limited single view coverage of the variety of surface angle.
(c) and (d) Our inverse rendering base depth optimization result with render
mesh.
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5.7. Conclusion and Future Work

To conclude this chapter, we introduce a novel inverse rendering based optimization

framework with a portable capture system for surface shape recovery with highly reflective

surface. We combine conventional multiview deflectometry with render-based optimization

to jointly optimize the surface shape without individual measurement blending. Moreover,

our framework directly optimizes the surface depth information, which could resolve the

common depth/scale ambiguities in conventional appearance based shape recovery methods.

We have demonstrated how to use a simple setup to acquire high quality 3D reconstruction

results of the challenging surface. We hope our method would create a new field for appear-

ance based shape recovery and enable more different new applications with this powerful

tool.

There are still several limitations, and we think it could be solved by possible future di-

rection. First, due to the reflectance model that we are currently using, we could only recon-

struct mirror-like object, which is perfectly aligned with pure specular reflectance. However,

our render base pipeline could be generalized for more complex reflectance properties. We

have been testing the capabilities to deal with more complex materials with the Blinn-Phong

model. From our preliminary simulation results, as shown in Fig 5.6, it could reconstruct

not only the depth but also the diffuse texture. For the real data, we could further leverage

the polarization camera in our system to separate diffuse and specular components for better

modeling of real world material.

For the result that we showed, the reconstruct surfaces are a little bit noisy in terms

of the depth change. To better constrain the optimization to deal with the noise, we are

interested in changing into Mesh optimization instead of depth. With mesh optimization,
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Figure 5.6. Simulation of complex reflectance model and joint pa-
rameters optimization Preliminary results for complex reflectance model
and joint parameters optimization with simulation. The selected simulated
appearance measurement are shown in (a). (b) The diffuse texture and depth
comparison between ground truth and optimized results.

we could impose more shape priors such as template mesh and regularization terms such as

laplacian graph and volumetric constraint to achieve smooth surface reconstruction. Also,

due to the memory limitation with the single GPU, currently, we could only do limited

resolution for capture image and the optimized depth map. This could be improved with a

more optimized pipeline and utilize with multiple GPUs. Moreover, currently, we use the

sinusoid pattern similar to conventional deflectometry. It is an interesting problem to see the

optimal illumination pattern for fewer patterns or more complex surface material. Lastly,

we only focus on the geometry reconstruction with fixed scene parameters now. It is also

interesting to see the possibility of having more joint scene parameters optimization such

as BRDF fitting or relax the camera and display calibration, which could also potentially

extend our framework to less constrained systems such as mobile devices.
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CHAPTER 6

Conclusion

In the previous chapters, this dissertation introduced four novel mobile computational

imaging systems for appearance modeling based surface shape recovery. The first part of

the thesis focus on robust and portable photometric stereo for the Lambertian surface. In

chapter 2, we solve the near light challenge, which is the most fundamental limitation in

conventional photometric stereo methods by efficiently leveraging photogrammetry for light-

ing position estimation with geometric triangulation, which could provide better lighting

estimation for the near light photometric stereo algorithm. In addition, with the coarse

geometry from photogrammetry, we could regularize the low-frequency bias that produces

from the normal integration step in photometric stereo results to recover the surface shape

on both coarse and fine-scale with a compact portable and user-friendly 3D imaging solution.

After this dual-camera approach, we keep thinking about relaxing the hardware constrain

and also isolating the different reflectance signals to achieve better shape information. In

chapter 3, we innovate a simpler un-calibrated photometric stereo framework with a single

mobile device and a custom 3D printed widget. We exploit the linear polarization filter to ef-

ficiently suppress the specular reflection in our measurements. With the specular reflectance

suppression from our unique hardware setting, it not only reduces the noise from different

reflectance signals but also enables our robust hardware setup and streamlined acquisition

process for the ability to capture in the wild. We believe this could greatly benefit different

applications to apply surface shape recovery.
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The second part of the thesis moves to address the same surface shape measurement

problem but with highly reflective surface. We first propose a novel mobile deflectometry

system that could measure surface shape with specular objects in the wild. By applying

automated multi-view registration and blending algorithms, our method could still capture

surface with large normal variation and wide field of view with compact tablet system under

a hand-guided capture process. Finally, in chapter 5, inspired by the previous experience,

we propose a novel rendering Based optimization for specular surface shape Estimation. We

combine conventional multi-view deflectometry with render-based optimization to jointly

optimize the surface shape without individual measurement blending. Also, our framework

directly optimizes the surface depth information, which could provide unbias 3D information.

This thesis uses these distinct examples to highlight the soul of computational imaging,

which is leveraging unique hardware settings and novel image processing algorithms to enable

new capabilities in conventional cameras and mobile systems. We think the portable and ro-

bust shape recovery systems that we address in this thesis could enable lots of useful potential

applications. For instance, in the cultural heritage community, it could be a powerful and

user-friendly tool for collection surveys and documenting tools. For medical applications, we

foresee that it could be utilized by dermatologists for skin disease follow through and remote

diagnosis. Also, it could be applied to virtual reality and augmented reality applications for

more immersive user experience. Last but not least, during this COVID-19 pandemic and

close down situation, we start to think about the possibility of applying our framework to

use the same video conferencing hardware that a significant portion of the world already has

in front of them right now as they are forced to work remotely. We think it is highly possible

to adapt our methods for high-quality facial modeling for different usages.
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